
I Culverwell

Version 1.0

12 May 2017

ROM SAF CDOP-3

Continuous

LSQ fit

1 Continuous piecewise linear least squares fit

1.1 Theory

We consider the problem of fitting N straight lines between points with x-coordinates {X1,X2, ...XN+1}, which

do not have to be evenly spaced. In other words, ∆XJ := XJ+1 −XJ, J = 1 . . .N is not necessarily constant.

Within each segment we have nJ (again, not necessarily constant) data points {(xi
J,y

i
J), i = 1 . . .nJ}, which

we imagine to be scattered about the desired piecewise linear fit. Fig 1.1 shows the idea, for N = 4.

The standard way of fitting the noisy data by straight line segments would be to calculate the slope mJ

and intercept cJ of each segment independently, using the usual formulas

mJ = (xyJ − xJyJ)/(x2
J − (xJ)

2) (1.1)

cJ = yJ −mJxJ = (x2
JyJ − xJxyJ)/(x2

J − (xJ)
2), where (1.2)

f J := (nJ)
−1

nJ

∑
i=1

f i
J for general f . (1.3)

This procedure minimises the sum of the squares in each segment, but the resulting piecewise linear fit

is, naturally, discontinuous at the boundaries between the segments, as exemplified in Fig 1.1.

We could enforce continuity by insisting that the (J −1)th and Jth segments join at (XJ,YJ), where the

{YJ} are to be determined. Since the {XJ} are known, the {YJ} would then determine the entire fit.

The {YJ} can be found by minimising the overall sum of squares S, which is given by

S =
N

∑
J=1

1
2

nJ

∑
i=1

(yi
J −mJxi

J − cJ)
2 (1.4)

=
N

∑
J=1

1
2

nJ

∑
i=1

[

yi
J − xi

J

(

YJ+1 −YJ

XJ+1 −XJ

)

−

(

XJ+1YJ −XJYJ+1

XJ+1 −XJ

)]2

. (1.5)

Setting ∂S/∂YJ = 0, for J = 1 . . .N + 1 gives

nJ−1

∑
i=1

[

yi
J−1 +YJ−1

(

xi
J−1 −XJ

∆XJ−1

)

−YJ

(

xi
J−1 −XJ−1

∆XJ−1

)][

−

(

xi
J−1 −XJ−1

∆XJ−1

)]

+

nJ

∑
i=1

[

yi
J +YJ

(

xi
J −XJ+1

∆XJ

)

−YJ+1

(

xi
J −XJ

∆XJ

)][

+

(

xi
J −XJ+1

∆XJ

)]

= 0. (1.6)

Eqn (1.6) holds for J = 2 . . .N. If J = 1 the first sum is omitted; for J = N + 1 the second one is.

1

ROM SAF CDOP-3

Continuous

LSQ fit

I Culverwell

Version 1.0

12 May 2017

Example least squares fits (N=4)

X
1

X
2

X
3

X
4

X
5

x

-1

0

1

2

y
Data (xi

J, y
i
J)

Piecewise LSQ fit (∑iJ(y
i
J-mJx

i
J-cJ)

2 = 3.11573)

Continuous LSQ fit (∑iJ(y
i
J-mJx

i
J-cJ)

2 = 3.4004)

Figure 1.1: Example piecewise linear fits. Blue: least squares fit in each region calculated
independently; red: least squares fit with enforced continuity between regions.

Rearranging Eqn (1.6) and collecting terms, we find

YJ−1

{

−
nJ−1

(∆xJ−1)2 (xJ−1 −XJ−1)(xJ−1 −XJ)

}

+

YJ

{

nJ−1

(∆xJ−1)2 (xJ−1 −XJ−1)2 +
nJ

(∆xJ)2 (xJ −XJ+1)2

}

+

YJ+1

{

−
nJ

(∆xJ)2 (xJ −XJ)(xJ −XJ+1)

}

=

{

nJ−1

∆xJ−1

[

xyJ−1 −XJ−1yJ−1

]

−
nJ

∆xJ

[

xyJ −XJ+1yJ

]

}

(1.7)

where the averages (xJ etc) are defined by Eqn (1.3). Eqn (1.7) holds for J = 2 . . .N. For J = 1 the terms

in nJ−1 and YJ−1 are omitted; for J = N + 1 the terms in nJ and YJ+1 are.

All the terms in curly brackets in Eqn (1.7) are calculable from the data {XJ,{(xi
J ,y

i
J), i = 1 . . .nJ}, J =

1 . . .N} and XN+1. Eqn (1.7) is therefore a tridiagonal system of equations for the unknowns {YJ}, for

which efficient and robust solvers are readily available (e.g. IDL’s TRISOL or the NAG library’s F04BCF).

Once the {YJ} are known, the straight line fit to the data in the Jth region (J = 1 . . .N) is given by

y = mJx+ cJ, where (1.8)

mJ = (YJ+1 −YJ)/(XJ+1 −XJ) and (1.9)

cJ = (XJ+1YJ −XJYJ+1)/(XJ+1 −XJ). (1.10)

2

I Culverwell

Version 1.0

12 May 2017

ROM SAF CDOP-3

Continuous

LSQ fit

Fig 1.1 shows the result of applying this method to the data whose piece-by-piece least squares linear fit

was calculated earlier. As can be seen, the fit is now continuous, although the price of this continuity is a

10% increase in the overall sum of squares.

1.2 Code

There follows a Fortran-90 subroutine to implement the algorithm of Eqn (1.7) in the special but common

case where nJ and ∆xJ are constant. This allows the input data {{(xi
J ,y

i
J), i = 1 . . .nJ}, J = 1 . . .N} to be

held as 2D arrays of size (n,N), where n is the common value of nJ . The general case could be handled

by holding these data as 1D arrays of length ∑N
J=1 nJ, and using F90 WHERE statements to select the data

points within each interval XJ ≤ xi
J < XJ+1. Alternatively, the data could be held in masked 2D arrays of

size (maxJ nJ,N). Both solutions would incur costs in execution time and in recoding.

! ---

SUBROUTINE cont_lsq_fit (x, y, bigx, bigy, yout)

! Make piecewise linear LSQ fit to {{(x^i_J, y^i_J), i=1, n}, J=1, bign)

! by constructing the ordinates Y_J at the given abscissae X_J.

! x^i_J and y^i_J are held in 2D arrays x(i, J) and y(i, J).

! Optionally, return the fitted values in the 2D array yout.

! wp is assumed to be the desired real working precision kind value.

! Reference:

! http://www.golovchenko.org/docs/ContinuousPiecewiseLinearFit.pdf

! I/O

REAL(wp), INTENT(IN) :: x(:, :), y(:, :), bigx(:)

REAL(wp), INTENT(INOUT) :: bigy(:)

REAL(wp), OPTIONAL, INTENT(INOUT) :: yout(:, :)

! Local

INTEGER :: n, bign, J

REAL(wp), ALLOCATABLE :: xbar(:), ybar(:), xxbar(:), xybar(:)

REAL(wp), ALLOCATABLE :: dl(:), dd(:), du(:), rhs(:)

REAL(wp) :: grad, intercept

! Sizes

n = SIZE(x, 1)

bign = SIZE(x, 2)

! Means

ALLOCATE (xbar(1:bign), xxbar(1:bign), ybar(1:bign), xybar(1:bign))

xbar = SUM(x, DIM=1) / n

xxbar = SUM(x*x, DIM=1) / n

3

ROM SAF CDOP-3

Continuous

LSQ fit

I Culverwell

Version 1.0

12 May 2017

ybar = SUM(y, DIM=1) / n

xybar = SUM(x*y, DIM=1) / n

! Define tridiagonal matrix

ALLOCATE (dl(1:bign+1), dd(1:bign+1), du(1:bign+1), rhs(1:bign+1))

!! Top row of tridiag

J = 1

dl(J) = 0.0_wp

dd(J) = xxbar(J) - xbar(J)*2.0_wp*bigx(J+1) + bigx(J+1)**2

du(J) = -(xxbar(J) - xbar(J)*(bigx(J)+bigx(J+1)) + bigx(J)*bigx(J+1))

rhs(J) = -(bigx(J+1)-bigx(J)) * (xybar(J) - ybar(J)*bigx(J+1))

!! Bottom row of tridiag

J = bign + 1

dl(J) = -(xxbar(J-1) - xbar(J-1)*(bigx(J)+bigx(J-1)) + bigx(J)*bigx(J-1))

dd(J) = xxbar(J-1) - xbar(J-1)*2.0_wp*bigx(J-1) + bigx(J-1)**2

du(J) = 0.0_wp

rhs(J) = (bigx(J)-bigx(J-1)) * (xybar(J-1) - ybar(J-1)*bigx(J-1))

!! Other rows of tridiag

DO J=2,bign

dl(J) = -(xxbar(J-1) - xbar(J-1)*(bigx(J)+bigx(J-1)) + bigx(J)*bigx(J-1))

dd(J) = xxbar(J-1) - xbar(J-1)*2.0_wp*bigx(J-1) + bigx(J-1)**2 + &

xxbar(J) - xbar(J)*2.0_wp*bigx(J+1) + bigx(J+1)**2

du(J) = -(xxbar(J) - xbar(J)*(bigx(J)+bigx(J+1)) + bigx(J)*bigx(J+1))

rhs(J) = (bigx(J)-bigx(J-1)) * (xybar(J-1) - ybar(J-1)*bigx(J-1)) - &

(bigx(J+1)-bigx(J)) * (xybar(J) - ybar(J)*bigx(J+1))

END DO

! Tridiagonal inversion

CALL TRISOL(dl, dd, du, rhs, bigy)

! Generate fit at original x values

IF (PRESENT(yout)) THEN

DO J=1,bign

grad = (bigy(J+1) - bigy(J)) / (bigx(J+1) - bigx(J))

intercept = bigy(J+1) - grad * bigx(J+1)

yout(:, J) = grad * x(:, J) + intercept

END DO

END IF

4

I Culverwell

Version 1.0

12 May 2017

ROM SAF CDOP-3

Continuous

LSQ fit

! Clean up

DEALLOCATE (rhs, du, dd, dl)

DEALLOCATE (xybar, ybar, xxbar, xbar)

END SUBROUTINE cont_lsq_fit

! ---

Tridiagonal solvers abound, but, for completeness, here is a simple one:

! ---

SUBROUTINE TRISOL(a, b, c, d, x)

! Solves

! _ _ _ _ _ _

! | b1 c1 | |x1 | = |d1 |

! | a2 b2 c2 | |x2 | = |d2 |

! | . . . | |. | = |. |

! | ai bi ci | |xi | = |di |

! | . . . | |. | = |. |

! | an-1 bn-1 cn-1| |xn-1| = |dn-1|

! | an bn| |xn | = |dn |

! - - - - - -

! by Gaussian elimination without pivoting.

!

! Refererence:

! https://en.wikipedia.org/w/index.php?title=Tridiagonal_matrix_algorithm.

!

! a1 and cn must be supplied (i.e. all vectors must have dimension (1:n)),

! even though they are not used.

! I/O

REAL(wp), INTENT(IN) :: a(:), b(:), c(:), d(:)

REAL(wp), INTENT(INOUT) :: x(:)

! Local

INTEGER :: i, n

REAL(wp), ALLOCATABLE :: c1(:), d1(:)

! Sizes

n = SIZE(a)

ALLOCATE (c1(n), d1(n))

5

ROM SAF CDOP-3

Continuous

LSQ fit

I Culverwell

Version 1.0

12 May 2017

c1(1) = c(1) / b(1)

DO i=2,n-1

c1(i) = c(i) / (b(i) - a(i)*c1(i-1))

END DO

d1(1) = d(1) / b(1)

DO i=2,n

d1(i) = (d(i) - a(i)*d1(i-1)) / (b(i) - a(i)*c1(i-1))

END DO

x(n) = d1(n)

DO i=n-1,1,-1

x(i) = d1(i) - c1(i)*x(i+1)

END DO

DEALLOCATE (d1, c1)

END SUBROUTINE TRISOL

! ---

1.3 Results

This work was prompted by the inclusion of a wave optics propagator in version 9.0 of the ROM SAF

Radio Occultation Processing Package, ROPP (http://www.romsaf.org/ropp/index.php). The new

tool simulates the propagation of radio waves between transmitting and receiving satellites as they pass

through the earth’s refractivity field, which is modelled as a series of vertical refractivity ‘screens’. The

radio signal at each point of the receiving satellite’s orbit is calculated by a Fresnel integral of the phase

and amplitude of the signal on the final screen (http://www.romsaf.org/romsaf ropp ug pp.pdf).

Currently these final screen phases and amplitudes are represented by a set of piecewise linear fits to

inherently high resolution (∼ 106 points) source data, like the blue curves in Fig 1.1. (Linear fits allow the

Fresnel integrals to be evaluated analytically.) It is natural to ask whether a continuous piecewise linear fit,

like red curve in Fig 1.1, might give a better solution — for example, a less noisy one.

In fact, the use of a continuous least squares fit generally makes little difference to the bending an-

gles and refractivities derived from the excess phase data by means of the ROPP pre-processing tool

ropp pp occ tool, even if we increase the number of points in each region (i.e. nJ) from its default of 100

to 200. For example, Fig 1.2 compares the bending angles and refractvities produced by the wave optics

propagator when it runs through a refractivity profile with some large vertical refractive index gradients.

The bending angles produced by the continuous and discontinuous least squares fits are both noisy below

25 km (where ropp pp occ tool uses wave optics processing to generate bending angles), but are very

similar on average throughout the profile. In addition, the refractivies derived from these bending angles

are compared to each other and to the input refractivity profile. Again, the two models produce very similar

results. If anything, the discontinuous fit looks slightly closer to the input refractivity below 25 km.

6

I Culverwell

Version 1.0

12 May 2017

ROM SAF CDOP-3

Continuous

LSQ fit

10-7 10-6 10-5 10-4 10-3 10-2 10-1

bangle (rad)

0

20

40

60

80

im
p

ac
t

h
ei

g
h

t
(k

m
)

-0.10 -0.05 0.00 0.05 0.10
fractional bangle difference

0.5*Dsc LSQfit

2.0*Cts LSQfit

Fractional diff

10-3 10-2 10-1 100 101 102 103

refrac (N-units)

0

20

40

60

80

al
ti

tu
d

e
(k

m
)

-0.04 -0.02 0.00 0.02 0.04
fractional refrac difference

Input

0.5*Dsc

2.0*Cts

Cts/Dsc-1

Dsc/Input-1

Cts/Input-1

CASE_05_ref1d (200 pts per sample)

Figure 1.2: Comparison of bending angles and refractivities derived from excess phase data
produced by the wave optics propagator when the signal on the final screen modelled by con-
tinuous and discontinuous piecewise linear fits. This uses 200 points per sample, which is twice
the default. Left: bending angles and their fractional differences. Right: refractivities and their
fractional differences with respect to each other and to the input refractivity.

7

ROM SAF CDOP-3

Continuous

LSQ fit

I Culverwell

Version 1.0

12 May 2017

10-7 10-6 10-5 10-4 10-3 10-2 10-1

bangle (rad)

0

20

40

60

80

im
p

ac
t

h
ei

g
h

t
(k

m
)

-0.10 -0.05 0.00 0.05 0.10
fractional bangle difference

0.5*Dsc LSQfit

2.0*Cts LSQfit

Fractional diff

10-3 10-2 10-1 100 101 102 103

refrac (N-units)

0

20

40

60

80

al
ti

tu
d

e
(k

m
)

-0.04 -0.02 0.00 0.02 0.04
fractional refrac difference

Input

0.5*Dsc

2.0*Cts

Cts/Dsc-1

Dsc/Input-1

Cts/Input-1

CASE_51_ref1d (200 pts per sample)

Figure 1.3: As Fig 1.2, but for a different input refractivity profile (one with lower vertical
gradients).

There is one case in which the continuous least squares fit is better, and this is shown in Fig 1.3. In this

example, which is derived from a refractivity profile having modest vertical gradients, ropp pp occ tool

fails to produce any sort of meaningful bending angle when presented with excess phases generated from

discontinuous linear fits to the signal on the final screen. Excess phases produced by continuous fits, however,

generate reasonable bending angles and thence refractivities. The continuous fit is therefore more robust

in this case. But it should be remembered that both runs use values of nJ (namely, 200) that are twice as

large as usual. In the default case there is very little difference between the two. So a better solution in

this case would be to use nJ = 100. (The implication for the wave optics propagator is therefore that nJ

should never be larger than 100.)

A possible reason for the clear difference between the two methods in this case is shown in Fig 1.4,

which is a zoomed-in section of the amplitude of the signal near the top of the final screen (where the

signal is ‘apodized’), and the continuous and discontinuous linear fits to it. Large gaps in the amplitude are

produced by the discontinuous method in regions where the gradient of the amplitude is changing rapidly.

Naturally, these gaps disappear when continuous linear fits are used. If nJ = 100 the corresponding curves

(not shown) are almost indistinguishable by eye, which is why there is little difference in the bending angles

derived from them.

8

I Culverwell

Version 1.0

12 May 2017

ROM SAF CDOP-3

Continuous

LSQ fit

Figure 1.4: Zoomed-in signal amplitudes on the final refractivity screen, for the case used in
Fig 1.3. Top: high resolution source data. Middle: Discontinuous linear fits (200 points per
sample). Bottom: continuous linear fits (200 points per sample).

9

ROM SAF CDOP-3

Continuous

LSQ fit

I Culverwell

Version 1.0

12 May 2017

1.4 Conclusions

This note has described the means to generate a continuous piecewise linear fit to a set of data points

{(xi,yi)}. The calculation involves the solution of a tridiagonal system of equations for the y-values at the

boundaries of the fitting regions. Such systems can be solved simply and quickly, and Fortran-90 codes to

do so have been included. The price of this continuity is an increase in the overall sum of squares above

that produced by the usual piece-by-piece least squares fitting procedure.

In one example the new fitting method was not found to deliver significant advantages over the usual

method. It is hoped, however, that the theory may prove beneficial in other situations.

1.5 Acknowledgements

Useful discussions on this subject with Sean Healy (ECMWF) and Chris Burrows (Met Office) are gratefully

acknowledged.

10

