
Chapter 2
Coordinate and Time Systems

Satellites orbit around the Earth or travel in the planet system of the sun. They are
generally observed from the Earth. To describe the orbits of the satellites (positions
and velocities), suitable coordinate and time systems have to be defined.

2.1 Geocentric Earth-Fixed Coordinate Systems

It is convenient to use the Earth-Centred Earth-Fixed (ECEF) coordinate system to
describe the location of a station on the Earth’s surface. The ECEF coordinate sys-
tem is a right-handed Cartesian system (x,y,z). Its origin and the Earth’s centre of
mass coincide, while its z-axis and the mean rotational axis of the Earth coincide; the
x-axis points to the mean Greenwich meridian, while the y-axis is directed to com-
plete a right-handed system (Fig. 2.1). In other words, the z-axis points to a mean
pole of the Earth’s rotation. Such a mean pole, defined by international convention,
is called the Conventional International Origin (CIO). The xy-plane is called the
mean equatorial plane, and the xz-plane is called the mean zero-meridian.

Fig. 2.1 Earth-Centred
Earth-Fixed coordinates
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6 2 Coordinate and Time Systems

The ECEF coordinate system is also known as the Conventional Terrestrial
System (CTS). The mean rotational axis and mean zero-meridian used here are
necessary. The true rotational axis of the Earth changes its direction all the time
with respect to the Earth’s body. If such a pole is used to define a coordinate sys-
tem, then the coordinates of the station would also change all the time. Because the
survey is made in our true world, it is obvious that the polar motion has to be taken
into account and will be discussed later.

The ECEF coordinate system can, of course, be represented by a spherical coor-
dinate system (r,φ ,λ ), where r is the radius of the point (x,y,z), and φ and λ are
the geocentric latitude and longitude, respectively (Fig. 2.2). λ is counted eastward
from the zero-meridian. The relationship between (x,y,z) and (r,φ ,λ ) is obvious:

⎛
⎝

x
y
z

⎞
⎠=

⎛
⎝

r cosφ cosλ
r cosφ sinλ

r sinφ

⎞
⎠ or

⎧⎪⎨
⎪⎩

r =
√

x2 + y2 + z2,

tanλ = y/x,

tanφ = z/
√

x2 + y2.

(2.1)

An ellipsoidal coordinate system (ϕ , λ , h) may also be defined on the basis of the
ECEF coordinates; however, geometrically, two additional parameters are needed
to define the shape of the ellipsoid (Fig. 2.3). ϕ , λ and h are geodetic latitude,
longitude and height, respectively. The ellipsoidal surface is a rotational ellipse.
The ellipsoidal system is also called the geodetic coordinate system. Geocentric
longitude and geodetic longitude are identical. The two geometric parameters could
be the semi-major radius (denoted by a) and the semi-minor radius (denoted by b)
of the rotating ellipse, or the semi-major radius and the flattening (denoted by f )
of the ellipsoid. They are equivalent sets of parameters. The relationship between
(x,y,z) and (ϕ , λ , h) is (see, e.g., Torge, 1991):

⎛
⎝

x
y
z

⎞
⎠=

⎛
⎝

(N +h)cosϕ cosλ
(N +h)cosϕ sinλ

(N(1− e2)+h)sinϕ

⎞
⎠ (2.2)

Fig. 2.2 Cartesian and
spherical coordinates



2.1 Geocentric Earth-Fixed Coordinate Systems 7

Fig. 2.3 Ellipsoidal
coordinate system

or ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tanϕ =
z√

x2 + y2

(
1− e2 N

N+h

)−1
,

tanλ =
y
x
,

h =

√
x2 + y2

cosϕ
−N,

(2.3)

where
N =

a√
1− e2 sin2 ϕ

. (2.4)

N is the radius of curvature in the prime vertical, and e is the first eccentricity. The
geometric meaning of N is shown in Fig. 2.4. In (2.3), the ϕ and h have to be solved
by iteration; however, the iteration process converges quickly, since h << N. The
flattening and the first eccentricity are defined as

f =
a−b

a
and e =

√
a2 −b2

a
. (2.5)

In cases where ϕ = ±90◦ or h is very large, the iteration formulas of (2.3) could
be instable. Alternatively, using

c tanϕ =

√
x2 + y2

z+Δz
and Δz = e2N sinϕ =

ae2 sinϕ√
1− e2 sin2 ϕ

,

may lead to a stably iterated result of ϕ (see Lelgemann, 2002). Δz and e2N are
the lengths of OB and AB (see Fig. 2.4), respectively. The geodetic height h can be
obtained using Δz, i.e.,
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Fig. 2.4 Radius of curvature
in the prime vertical

h =
√

x2 + y2 +(z+Δz)2 −N.

The two geometric parameters used in the World Geodetic System 1984 (WGS-
84) are (a = 6378137m, f = 1/298.2572236). In International Terrestrial Ref-
erence Frame 1996 (ITRF-96), the two parameters are (a = 6378136.49m, f =
1/298.25645). ITRF uses the International Earth Rotation Service (IERS) Con-
ventions (see McCarthy, 1996). In the PZ-90 (Parameters of the Earth Year 1990)
coordinate system of GLONASS, the two parameters are (a = 6378136m, f =
1/298.2578393).

The relation between the geocentric and geodetic latitude φ and ϕ (see (2.1) and
(2.3)) may be given by

tanφ =
(

1− e2 N
N +h

)
tanϕ. (2.6)

2.2 Coordinate System Transformations

Any Cartesian coordinate system can be transformed to another Cartesian coordi-
nate system through three successive rotations if their origins are the same and if
they are both right-handed or left-handed coordinate systems. These three rotational
matrices are

R1(α) =

⎛
⎝

1 0 0
0 cosα sinα
0 −sinα cosα

⎞
⎠ ,

R2(α) =

⎛
⎝

cosα 0 −sinα
0 1 0

sinα 0 cosα

⎞
⎠ , (2.7)

R3(α) =

⎛
⎝

cosα sinα 0
−sinα cosα 0

0 0 1

⎞
⎠ ,
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where α is the rotating angle, which has a positive sign for a counter-clockwise
rotation as viewed from the positive axis to the origin. R1, R2, and R3 are called the
rotating matrix around the x, y, and z-axis, respectively. For any rotational matrix R,
there are properties of R−1(α) = RT (α) and R−1(α) = R(−α); that is, the rotational
matrix is an orthogonal one, where R−1 and RT are the inverse and transpose of the
matrix R.

For two Cartesian coordinate systems with different origins and different length
units, the general transformation can be given in vector (matrix) form as

Xn = X0 + μRXold (2.8)

or ⎛
⎝

xn

yn

zn

⎞
⎠=

⎛
⎝

x0

y0

z0

⎞
⎠+ μR

⎛
⎝

xold

yold

zold

⎞
⎠ ,

where μ is the scale factor (or the ratio of the two length units), and R is a transfor-
mation matrix that can be formed by three suitably successive rotations. xn and xold

denote the new and old coordinates, respectively; x0 denotes the translation vec-
tor and is the coordinate vector of the origin of the old coordinate system in the
new one.

If rotational angle α is very small, then one has sinα ≈ α and cosα ≈ 1. In such
a case, the rotational matrix can be simplified. If the three rotational angles α1, α2,
α3 in R of (2.8) are very small, then R can be written as

R =

⎛
⎝

1 α3 −α2

−α3 1 α1

α2 −α1 1

⎞
⎠ , (2.9)

where α1, α2, α3 are small rotating angles around the x, y and z-axis, respectively
(see, e.g., Lelgemann and Xu, 1991). Using the simplified R, the transformation
(2.8) is called the Helmert transformation.

As an example, the transformation from WGS-84 to ITRF-90 (McCarthy, 1996)
is given by:

⎛
⎝

xITRF-90

yITRF-90

zITRF-90

⎞
⎠=

⎛
⎝

0.060
−0.517
−0.223

⎞
⎠+ μ

⎛
⎝

1 −0.0070′′ −0.0003′′

0.0070′′ 1 −0.0183′′

0.0003′′ 0.0183′′ 1

⎞
⎠
⎛
⎝

xWGS-84

yWGS-84

zWGS-84

⎞
⎠ ,

where μ = 0.999999989, and the translation vector has the unit of meter.
The transformation between two coordinate systems can be generally represented

by (2.8), where the scale factor μ = 1 (i.e., the units of length used nowadays are the
same). A formula of velocity transformation between different coordinate systems
can be obtained by differentiating (2.8) with respect to the time.
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2.3 Local Coordinate System

The local left-handed Cartesian coordinate system (x′,y′,z′) can be defined by plac-
ing the origin to the local point P1(x1,y1,z1), whose z′-axis is pointed to the vertical,
x′-axis is directed to the north, and y′ is pointed to the east (see Fig. 2.5). The x′y′-
plane is called the horizontal plane; the vertical is defined perpendicular to the ellip-
soid. Such a coordinate system is also called a local horizontal coordinate system.
For any point P2, whose coordinates in the global and local coordinate system are
(x2,y2,z2) and (x′,y′,z′), respectively, one has relations of

⎛
⎝

x′

y′

z′

⎞
⎠= d

⎛
⎝

cosAsinZ
sinAsinZ

cosZ

⎞
⎠ , and

⎛
⎝d =

√
x′2 + y′2 + z′2

tanA = y′/x′

cosZ = z′/d

⎞
⎠ , (2.10)

where A is the azimuth, Z is the zenith distance and d is the radius of the P2 in the
local system. A is measured from the north clockwise; Z is the angle between the
vertical and the radius d.

The local coordinate system (x′,y′,z′) can indeed be obtained by two successive
rotations of the global coordinate system (x,y,z) by R2(90◦ −ϕ)R3(λ ) and then by
changing the x-axis to a right-handed system. In other words, the global system
has to be rotated around the z-axis with angle λ , then around the y-axis with angle
90◦ −ϕ , and then change the sign of the x-axis. The total transformation matrix R
is then

R =

⎛
⎝

−sinϕ cosλ −sinϕ sinλ cosϕ
−sinλ cosλ 0

cosϕ cosλ cosϕ sinλ sinϕ

⎞
⎠ , (2.11)

and there are

Xlocal = RXglobal and Xglobal = RT Xlocal, (2.12)

where Xlocal and Xglobal are the same vector represented in local and global coordi-
nate systems. (ϕ,λ ) are the geodetic latitude and longitude of the local point.

Fig. 2.5 Astronomical
coordinate system
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If the vertical direction is defined as the plumb line of the gravitational field at
the local point, then such a local coordinate system is called an astronomic hori-
zontal system (its x′-axis is pointed to the north, left-handed system). The plumb
line of gravity g and the vertical line of the ellipsoid at the point p are generally not
coinciding with each other; however, the difference is very small. The difference is
omitted in GPS practice.

Combining (2.10) and (2.12), the zenith angle and azimuth of a point P2 (satellite)
related to the station P1 can be directly computed by using the global coordinates of
the two points by

cosZ =
z′

d
and tanA =

y′

x′
, (2.13)

where

d =
√

(x2 − x1)2 +(y2 − y1)2 +(z2 − z1)2,

x′ = −(x2 − x1)sinϕ cosλ − (y2 − y1)sinϕ sinλ +(z2 − z1)cosϕ,

y′ = −(x2 − x1)sinλ +(y2 − y1)cosλ
and

z′ = (x2 − x1)cosϕ cosλ +(y2 − y1)cosϕ sinλ +(z2 − z1)sinϕ.

2.4 Earth-Centred Inertial Coordinate System

To describe the motion of the GPS satellites, an inertial coordinate system has to
be defined. The motion of the satellites follows the Newtonian mechanics, and the
Newtonian mechanics is valid and expressed in an inertial coordinate system. For
various reasons, the Conventional Celestial Reference Frame (CRF) is suitable for
our purpose. The xy-plane of the CRF is the plane of the Earth’s equator; the coor-
dinates are celestial longitude, measured eastward along the equator from the vernal
equinox, and celestial latitude. The vernal equinox is a crossover point of the eclip-
tic and the equator. So the right-handed Earth-centred inertial (ECI) system uses the
Earth centre as the origin, CIO (Conventional International Origin) as the z-axis, and
its x-axis is directed to the equinox of J2000.0 (Julian Date of 12h 1st January 2000).
Such a coordinate system is also called equatorial coordinates of date. Because of
the motion (acceleration) of the Earth’s centre, ECI is indeed a quasi-inertial system,
and the general relativistic effects have to be taken into account in this system. The
system moves around the sun, however, without rotating with respect to the CIO.
This system is also called the Earth-centred space-fixed (ECSF) coordinate system.

An excellent figure has been given by Torge (1991) to illustrate the motion of the
Earth’s pole with respect to the ecliptic pole (see Fig. 2.6). The Earth’s flattening,
combined with the obliquity of the ecliptic, results in a slow turning of the equator
on the ecliptic due to the differential gravitational effect of the moon and the sun.
The slow circular motion with a period of about 26000 years is called precession,
and the other quicker motion with periods ranging from 14 days to 18.6 years is
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Fig. 2.6 Precession and
nutation

called nutation. Taking the precession and nutation into account, the Earth’s mean
pole (related to the mean equator) is transformed to the Earth’s true pole (related to
the true equator). The x-axis of the ECI is pointed to the vernal equinox of date.

The angle of the Earth’s rotation from the equinox of date to the Greenwich
meridian is called Greenwich Apparent Sidereal Time (GAST). Taking GAST into
account (called the Earth’s rotation), the ECI of date is transformed to the true equa-
torial coordinate system. The difference between the true equatorial system and the
ECEF system is the polar motion. So we have transformed the ECI system in a ge-
ometric way to the ECEF system. Such a transformation process can be written as

XECEF = RMRSRNRPXECI, (2.14)

where RP is the precession matrix, RN is the nutation matrix, RS is the Earth rotation
matrix, RM is the polar motion matrix, X is the coordinate vector, and indices ECEF
and ECI denote the related coordinate systems.

Precession

The precession matrix consists of three successive rotational matrices, i.e. (see, e.g.,
Hofmann-Wellenhof et al., 1997/2001; Leick, 1995/2004; McCarthy, 1996),

RP = R3(−z)R2(θ)R3(−ζ )

=

⎛
⎝

coszcosθ cosζ − sinzsinζ −coszcosθ sinζ − sinzcosζ −coszsinθ
sinzcosθ cosζ + coszsinζ −sinzcosθ sinζ + coszcosζ −sinzsinθ

sinθ cosζ −sinθ sinζ cosθ

⎞
⎠ ,

(2.15)

where z,θ ,ζ are precession parameters and

z = 2306.′′2181T +1.′′09468T 2 +0.′′018203T 3,

θ = 2004.′′3109T −0.′′42665T 2 −0.′′041833T 3 (2.16)
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and

ζ = 2306.′′2181T +0.′′30188T 2 +0.′′017998T 3,

where T is the measuring time in Julian centuries (36525 days) counted from
J2000.0 (see Sect. 2.8 time systems).

Nutation

The nutation matrix consists of three successive rotational matrices, i.e. (see, e.g.,
Hofmann-Wellenhof et al., 1997/2001; Leick, 1995/2004; McCarthy, 1996)

RN = R1(−ε −Δε)R3(−Δψ)R1(ε)

=

⎛
⎝

cosΔψ −sinΔψ cosε −sinΔψ sinε
sinΔψ cosεt cosΔψ cosεt cosε + sinεt sinε cosΔψ cosεt sinε − sinεt cosε
sinΔψ sinεt cosΔψ sinεt cosε − cosεt sinε cosΔψ sinεt sinε + cosεt cosε

⎞
⎠

≈

⎛
⎝

1 −Δψ cosε −Δψ sinε
Δψ cosεt 1 −Δε
Δψ sinεt Δε 1

⎞
⎠ ,

(2.17)

where ε is the mean obliquity of the ecliptic angle of date, Δψ and Δε are nutation
angles in longitude and obliquity, εt = ε +Δε , and

ε = 84381.′′448−46.′′8150T −0.′′00059T 2 +0.′′001813T 3. (2.18)

The approximation is made by letting cosΔψ = 1 and sinΔψ = Δψ for very
small Δψ . For precise purposes, the exact rotation matrix shall be used. The nutation
parameters Δψ and Δε can be computed using the International Astronomical Union
(IAU) theory or IERS theory:

ΔΨ =
106

∑
i=1

(Ai +A′
iT )sinβ ,

Δε =
106

∑
i=1

(Bi +B′
iT )cosβ ,

or

ΔΨ =
263

∑
i=1

(Ai +A′
iT )sinβ +A′′

i cosβ ,

Δε =
263

∑
i=1

(Bi +B′
iT )cosβ +B′′

i cosβ ,

where argument

β = N1il +N2il
′ +N3iF +N4iD+N5iΩ,
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where l is the mean anomaly of the moon, l′ is the mean anomaly of the sun,
F = L − Ω,D is the mean elongation of the moon from the sun, Ω is the mean
longitude of the ascending node of the moon, and L is the mean longitude of the
moon. The formulas of l, l′, F , D, and Ω, are given in Sect. 7.8. The coefficient
values of N1i, N2i, N3i, N4i, N5i, Ai, Bi, A′

i, B′
i, A′′

i , and B′′
i can be found in, e.g.,

McCarthy (1996). The updated formulas and tables can be found in updated IERS
conventions. For convenience, the coefficients of the IAU 1980 nutation model are
given in Appendix 1.

Earth Rotation

The Earth rotation matrix can be represented as

RS = R3(GAST), (2.19)

where GAST is Greenwich Apparent Sidereal Time and

GAST = GMST+ΔΨcosε +0.′′00264sinΩ+0.′′000063sin2Ω, (2.20)

where GMST is Greenwich Mean Sidereal Time. Ω is the mean longitude of the
ascending node of the moon; the second term on the right-hand side is the nutation
of the equinox. Furthermore,

GMST = GMST0 +αUT1,

GMST0 = 6×3600.′′0+41×60.′′0+50.′′54841

+8640184.′′812866T0 +0.′′093104T 2
0 −6.′′2×10−6T 3

0 ,

α = 1.002737909350795+5.9006×10−11T0 −5.9×10−15T 2
0 ,

(2.21)

where GMST0 is Greenwich Mean Sidereal Time at midnight on the day of interest.
α is the rate of change. UT1 is the polar motion corrected Universal Time (see
Sect. 2.8). T0 is the measuring time in Julian centuries (36525 days) counted from
J2000.0 to 0h UT1 of the measuring day. By computing GMST, UT1 is used (see
Sect. 2.8).

Polar Motion

As shown in Fig. 2.7, the polar motion is defined as the angles between the pole of
date and the CIO pole. The polar motion coordinate system is defined by xy-plane
coordinates, whose x-axis is pointed to the south and is coincided to the mean Green-
wich meridian, and whose y-axis is pointed to the west. xp and yp are the angles of
the pole of date, so the rotation matrix of polar motion can be represented as



2.5 IAU 2000 Framework 15

Fig. 2.7 Polar motion

RM = R2(−xp)R1(−yp) =

⎛
⎝

cosxp sinxp sinyp sinxp cosyp

0 cosyp −sinyp

−sinxp cosxp sinyp cosxp cosyp

⎞
⎠

≈

⎛
⎝

1 0 xp

0 1 −yp

−xp yp 1

⎞
⎠ .

(2.22)

The IERS determined xp and yp can be obtained from the home pages of IERS.

2.5 IAU 2000 Framework

At its 2000 General Assembly, the International Astronomical Union (IAU) adopted
a set of resolutions that provide a consistent framework for defining the barycentric
and geocentric celestial reference systems (Petit, 2002). The consequence of the res-
olution is that the coordinate transformation from celestial reference system (CRS,
i.e., the ECI system) to the terrestrial reference system (TRS, i.e., the ECEF system)
has the form

XECEF = RMRSRNPXECI, (2.23)

where RNP is the precession-nutation matrix, RS is the Earth rotation matrix, RM

is the polar motion matrix, X is the coordinate vector, and indices ECEF and ECI
denote the related coordinate systems. The rotation matrices are functions of time T
which is defined (see McCarthy and Petit, 2003) by

T = (TT−2000January 1d 12h TT) in days/36525, (2.24)

where TT is the Terrestrial Time (for details see Sect. 2.8) and

RM = R2(−xp)R1(−yp)R3(s′),
RS = R3(ϑ) (2.25)
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and
RNP = R3(−s)R3(−E)R2(d)R3(E),

where xp and yp are the angles of the pole of date (or polar coordinates of the Celes-
tial Intermediate Pole (CIP) in TRS), and s′ is a function of xp and yp:

s′ =
1
2

∫ T

T 0
(xpẏp − ẋpyp)dt

or approximately (see McCarthy and Capitaine, 2002)

s′ = (−47μas)T, (2.26)

where T is time in Julian Century counted from J2000.0 and

ϑ = 2π(0.7790572732640+1.00273781191135448Tu), (2.27)

where Tu = (Julian UT1 date – 2451545.0) and UT1 = UTC + (UT1 − UTC) ·
(UT1−UTC) is published by the IERS.

E and d being such that the coordinates of the CIP in the CRS are

X = sind cosE,

Y = sind sinE, (2.28)

Z = cosd.

Equivalently RNP can be given by

RNP = R3(−s) ·

⎛
⎝

1−aX2 −aXY X
−aXY 1−aY 2 Y
−X −Y 1−a(X2 +Y 2)

⎞
⎠

−1

, (2.29)

where

a =
1

1+ cosd
≈ 1

2
+

1
8
(X2 +Y 2). (2.30)

The developments of X and Y can be found on the website of the IERS Conventions

and have the following form (in mas: microarcsecond) (Capitaine, 2002)

X = −16616.99′′ +2004191742.88′′T −427219.05′′T 2

−198620.54′′T 3 −46.05′′T 4 +5.98′′T 5

+∑i [(as,0)i sinβ +(ac,0)i cosβ ] (2.31)

+∑i [(as,1)iT sinβ +(ac,1)iT cosβ ]

+∑i [(as,2)iT
2 sinβ +(ac,2)iT

2 cosβ ]+ · · · ,
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Y = −6950.78′′ −25381.99′′T −22407250.99′′T 2

+1842.28′′T 3 −1113.06′′T 4 +0.99′′T 5

+∑i [(bs,0)i sinβ +(bc,0)i cosβ ] (2.32)

+∑i [(bs,1)iT sinβ +(bc,1)iT cosβ ]

+∑i [(bs,2)iT
2 sinβ +(bc,2)iT

2 cosβ ]+ · · ·

s in (2.29) is the accumulated rotation, between the reference epoch and the date T ,
of CEO on the true equator due to the celestial motion of CIP, and can be expressed
as

s(T ) = −1
2
[X(T )Y (T )−X(T0)Y (T0)]+

∫ T

T0

ẊY dt − (σ0N0 −∑0 N0),

where σ0 and ∑0 are the positions of CEO at J2000.0 and the x-origin of CRS,
respectively and N0 is the ascending node at J2000.0 in the equator of CRS. In
above equation, terms(T )+ 1

2 [X(T )Y (T )] can be expressed as (in mas):

s+XY/2 = 94.0+3808.35T −119.94T 2

−72574.09T 3 +27.70T 4 +15.61T 5

+∑i[(cs,0)i sinβ +(cc,0)i cosβ ]

+∑i[(cs,1)iT sinβ +(cc,1)iT cosβ ]

+∑i[(cs,2)iT
2 sinβ +(cc,2)iT

2 cosβ ]+ · · ·

(2.33)

In (2.31), (2.32) and (2.33), coefficients (as, j)i,(ac, j)i, (bs, j)i,(bc, j)i and (cs, j)i,(cc, j)i

can be extracted from table5.2a, table5.2b and table5.2c (available at ftp://tai.bipm.
org/iers/conv2003/chapter5/). β is the combination of the fundamental arguments
of nutation theory

β =
14

∑
j=1

NjFj. (2.34)

The first five Fj are the Delaunary variables l, l′, F , D, Ω (given in Sect. 7.8);
the amplitudes of sines and cosines β can be derived from the amplitudes of the
precession and nutation series (see McCarthy and Petit, 2003); F6 to F13 are the
mean longitudes of the planets (Mercury to Neptune), including the Earth; F14 is
the general precession in longitude. They are given in radians and T in Julian Cen-
turies of TDB (see Sect. 2.8). The coefficients Nj are functions of index i and can
be found in IERS website.

F6 = lMe = 4.402608842+2608.7903141574T,

F7 = lVe = 3.176146697+1021.3285546211T,

F8 = lE = 1.753470314+628.3075849991T,
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F9 = lMa = 6.203480913+334.0612426700T,

F10 = lJu = 0.599546497+52.9690962641T, (2.35)

F11 = lSa = 0.874016757+21.3299104960T,

F12 = lUr = 5.481293872+7.4781598567T,

F13 = lNe = 5.311886287+3.8133035638T,

F14 = Pa = 0.024381750T +0.00000538691T 2.

Using the new paradigm, the complete procedure of transforming the GCRS to the
ITRS, which is compatible with the IAU2000 precession-nutation, is based on the
expressions of (2.31), (2.32) and (2.33).

An equivalent way to realise the transformation between TRS and CRS under the
definition of IAU 2000 can be implemented in a classical way by adding IAU2000
corrections to the corresponding rotating angles. Using the transformation formula
(2.14), where the three precession rotating angles (see McCarthy and Petit, 2003)
are

z = −2.5976176′′ +2306.0803226′′T +1.0947790′′T 2

+0.0182273′′T 3 +0.0000470′′T 4 −0.0000003′′T 5,

θ = 2004.1917476′′T −0.4269353′′T 2 −0.0418251′′T 3

−0.0000601′′T 4 −0.0000001′′T 5 (2.36)

and

ζ = 2.5976176′′ +2306.0809506′′T +0.3019015′′T 2

+0.0179663′′T 3 −0.0000327′′T 4 −0.0000002′′T 5.

The IAU 2000 nutation model is given by series for nutation in longitude Δψ and
obliquity Δε , referred to the mean equator and equinox of date, with T measured in
Julian centuries from epoch J2000.0:

Δψ =
N

∑
i=1

(Ai +A′
iT )cosβ +(A′′

i +A′′′
i T ) cosβ , (2.37)

Δε =
N

∑
i=1

(Bi +B′
iT )cosβ +(B′′

i +B′′′
i T ) cosβ ,

where argument β can be found on the IERS website. For these two formulas, rate
and bias corrections are necessary because of the new definition of the Celestial
Intermediate Pole and the Celestial and Terrestrial ephemeris Origin:

dΔψ = (−0.0166170±0.0000100)′′ +(−0.29965±0.00040)′′ T,

dΔε = (−0.0068192±0.0000100)′′ +(−0.02524±0.00010)′′ T. (2.38)
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The Earth rotation angle (i.e. the apparent Greenwich Sidereal Time GST or
GAST) can be computed by adding a correction EO to the GMST in (2.27) (in
mas)

EO = 14506+4612157399.66T +1396677.21T 2 −93.44T 3 +18.82T 4

+Δψ cosε +∑i [(ds,0)i sinβ +(dc,0)i cosβ ]

+∑i [(ds,1)iT sinβ +(dc,1)iT cosβ ]+ · · · ,

(2.39)

where coefficients (ds, j)i,(dc, j)i can be extracted from table5.4 (available at ftp://
tai.bipm.org/iers/conv2003/chapter5/). Δψ is defined in (2.37) and ε is defined in
(2.18).

Similarly, the rotation matrix of polar motion shall be represented as the first
formula of (2.25) and (2.26).

2.6 Geocentric Ecliptic Inertial Coordinate System

As discussed above, ECI uses the CIO pole in the space as the z-axis (through con-
sideration of the polar motion, nutation and precession). If the ecliptic pole is used
as the z-axis, then an ecliptic coordinate system is defined, and it may be called the
Earth Centred Ecliptic Inertial (ECEI) coordinate system. ECEI places the origin at
the mass centre of the Earth, its z-axis is directed to the ecliptic pole (or, the xy-plane
is the mean ecliptic), and its x-axis is pointed to the vernal equinox of date. The co-
ordinate transformation between the ECI and ECEI systems can be represented as

XECEI = R1(−ε)XECI, (2.40)

where ε is the ecliptic angle (mean obliquity) of the ecliptic plane related to the
equatorial plane. The formula for ε is given in Sect. 2.4. Usually, coordinates of the
sun and the moon, as well as planets, are given in the ECEI system.

2.7 Satellite Fixed Coordinate System

The orbit data, which describes the position of the satellite, is usually referred to the
mass centre of the satellite. However, the orbit determination is usually measured
through an instrument which is not exactly at the mass centre of the satellite. There-
fore, a satellite fixed coordinate system is necessary to be defined for describing the
position of the instrument (e.g., antenna or reflector). Such antenna centre correction
(also called mass centre correction) has to be applied to the satellite coordinates in
precise applications.
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Fig. 2.8 Satellite fixed
coordinate system

A satellite fixed coordinate system shall be set up for describing the antenna
phase centre offset to the mass centre of the satellite. As shown in Fig. 2.8, the origin
of the frame coincides with the mass centre of the satellite, the z-axis is parallel to
the antenna pointing direction, the y-axis is parallel to the solar-panel axis, and the
x-axis is selected to complete the right-handed frame. A solar vector is a vector from
the satellite mass centre pointed to the sun. During the motion of the satellite, the
z-axis is always pointing to the Earth, and the y-axis (solar-panel axis) shall be kept
perpendicular to the solar vector. In other words, the y-axis is always perpendicular
to the plane, which is formed by the sun, the Earth and satellite. The solar-panel
can be rotated around its axis to keep the solar-panel perpendicular to the ray of the
sun for optimally collecting the solar energy. The solar angle β is defined as the
angle between the z-axis and the solar identity vector �nsun (see Fig. 2.9). Denoting
the identity vector of the satellite fixed frame as (�ex, �ey, �ez), then the solar identity
vector can be represented as

�nsun =
(

sinβ , 0, cosβ
)
. (2.41)

β is needed for computation of the solar radiation pressure in orbit determination.
Denoting�r as the geocentric satellite vector and�rs as the geocentric solar vector

(Fig. 2.10),

Fig. 2.9 The sun vector in
satellite fixed frame



2.7 Satellite Fixed Coordinate System 21

Fig. 2.10 The Earth-sun-
satellite vectors

�r =

⎛
⎝

X
Y
Z

⎞
⎠ , �rS =

⎛
⎝

Xsun

Ysun

Zsun

⎞
⎠ , (2.42)

then in a geocentric coordinate system one has

�ez = − �r
|�r| , (2.43)

�ey =
�ez ×�nsun

|�ez ×�nsun|
,

�ex =�ey ×�ez, (2.44)

�nsun =
�rs −�r
|�rs −�r| (2.45)

and
cosβ =�nsun ·�ez, (2.46)

or

�ez =
−1
r

⎛
⎝

X
Y
Z

⎞
⎠ , r =

√
X2 +Y 2 +Z2, (2.47)

�nsun =
1
R

⎛
⎝

Xsun −X
Ysun −Y
Zsun −Z

⎞
⎠ , (2.48)

�ey =
−1
S

⎛
⎝

Y Zsun −YsunZ
ZXsun −ZsunX
XYsun −XsunY

⎞
⎠ (2.49)
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Table 2.1 GPS satellite antenna phase centre offset

Satellite x y z

Block I 0.2100 0.0 0.8540
Block II/IIA 0.2794 0.0 1.0259
Block IIR 0.0000 0.0 1.2053

and

�ex =
1

S · r

⎛
⎝

(ZXsun −ZsunX)Z − (XYsun −XsunY )Y
(XYsun −XsunY )X − (Y Zsun −YsunZ)Z
(Y Zsun −YsunZ)Y − (ZXsun −ZsunX)X

⎞
⎠ , (2.50)

where

R =
√

(Xsun −X)2 +(Ysun −Y )2 +(Zsun −Z)2 (2.51)

and

S =
√

(Y Zsun −YsunZ)2 +(ZXsun −ZsunX)2 +(XYsun −XsunY )2. (2.52)

Suppose the satellite antenna phase centre in the satellite fixed frame is (x,y,z),
then the offset vector in the geocentric frame can be obtained by substituting (2.47),
(2.49) and (2.50) into the following formula:

�d = x�ex + y�ey + z�ez, (2.53)

which may be added to the vector�r.
GPS satellite antenna phase centre offsets in the satellite fixed frame are given in

Table 2.1.
The dependence of the phase centre on the signal direction and frequencies is not

considered for the satellite here. A mis-orientation of the�ey (�ex too) of the satellite
with respect to the sun may cause errors in the geometrical phase centre correction.
In the Earth’s shadow (for up to 55 min), the mis-orientation becomes worse. The
geometrical mis-orientation may be modelled and estimated.

2.8 Time Systems

The three time systems used in satellite surveying are sidereal time, dynamic time
and atomic time (see, e.g., Hofmann-Wellenhof et al., 1997/2001; Leick, 1995/2004;
McCarthy, 1996; King et al., 1987).

Sidereal time is a measure of the Earth’s rotation and is defined as the hour angle
of the vernal equinox. If the measure is counted from the Greenwich meridian, the
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sidereal time is called Greenwich Sidereal Time. Universal Time (UT) is the Green-
wich hour angle of the apparent sun, which is orbiting uniformly in the equatorial
plane. Because the angular velocity of the Earth’s rotation is not a constant, sidereal
time is not a uniformly-scaled time. The oscillation of UT is also partly caused by
the polar motion of the Earth. The universal time corrected for the polar motion is
denoted by UT1.

Dynamical time is a uniformly-scaled time used to describe the motion of bodies
in a gravitational field. Barycentric Dynamic Time (TDB) is applied in an inertial
coordinate system (its origin is located at the centre-of-mass (Barycentre)). Terres-
trial Dynamic Time (TDT) is used in a quasi-inertial coordinate system (such as
ECI). Because of the motion of the Earth around the sun (or say, in the sun’s grav-
itational field), TDT will have a variation with respect to TDB. However, both the
satellite and the Earth are subject to almost the same gravitational perturbations.
TDT may be used for describing the satellite motion without taking into account
the influence of the gravitational field of the sun. TDT is also called Terrestrial
Time (TT).

Atomic Time is a time system kept by atomic clocks such as International Atomic
Time (TAI). It is a uniformly-scaled time used in the ECEF coordinate system. TDT
is realised by TAI in practice with a constant offset (32.184 s). Because of the slow-
ing down of the Earth’s rotation with respect to the sun, Coordinated Universal Time
(UTC) is introduced to keep the synchronisation of TAI to the solar day (by inserting
the leap seconds). GPS Time (GPST) is also atomic time.

The relationships between different time systems are given as follows:

TAI = GPST+19.0sec,

TAI = TDT−32.184sec,

TAI = UTC+nsec

UT1 = UTC+dUT1,

(2.54)

where dUT1 can be obtained by IERS, (dUT1 < 0.7s, see Zhu et al., 1996), (dUT1
is also broadcasted with the navigation data), n is the number of leap seconds of
date and is inserted into UTC on the 1st of January and 1st of July of the years. The
actual n can be found in the IERS report.

Time argument T (Julian centuries) is used in the formulas given in Sect. 2.4.
For convenience, T is denoted by TJD, and TJD can be computed from the civil
date (Year, Month, Day, and Hour) as follows:

JD = INT(365.25Y )+ INT(30.6001(M +1))+Day+Hour/24+1720981.5

and
TJD = JD/36525, (2.55)

where

Y = Year−1, M = Month+12, if Month ≤ 2,

Y = Year, M = Month, if Month > 2,
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where JD is the Julian Date, Hour is the time of UT and INT denotes the integer
part of a real number. The Julian Date counted from JD2000.0 is then JD2000 = JD–
JD2000.0, where JD2000.0 is the Julian Date of 2000 January 1st 12h and has the
value of 2451 545.0 days. One Julian century is 36 525 days.

Inversely, the civil date (Year, Month, Day and Hour) can be computed from the
Julian Date (JD) as follows:

b = INT(JD+0.5)+1537,

c = INT

(
b−122.1

365.25

)
,

d = INT(365.25c),

e = INT

(
b−d

30.6001

)
,

Hour = JD+0.5− INT(JD+0.5),
Day = b−d − INT(30.6001e),

Month = e−1−12INT
( e

14

)

and
Year = c−4715− INT

(
7+Month

10

)
, (2.56)

where b, c, d, and e are auxiliary numbers.
Because the GPS standard epoch is defined as JD = 2444244.5 (1980 January 6,

0h), GPS week and the day of week (denoted by Week and N) can be computed by

N = modulo(INT(JD+1.5),7)

and
Week = INT

(
JD−2444244.5

7

)
, (2.57)

where N is the day of week (N = 0 for Monday, N = 1 for Tuesday, and so on).
For saving digits and counting the date from midnight instead of noon, the Mod-

ified Julian Date (MJD) is defined as

MJD = (JD−2400000.5). (2.58)

GLONASS time (GLOT) is defined by Moscow time UTCSU, which equals UTC
plus three hours (corresponding to the offset of Moscow time to Greenwich time),
theoretically. GLOT is permanently monitored and adjusted by the GLONASS Cen-
tral Synchroniser (see Roßbach, 2006). UTC and GLOT then have a simple relation

UTC = GLOT+ τc −3h,
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where τc is the system time correction with respect to UTCSU, which is broadcasted
by the GLONASS ephemeris and is less than one microsecond. Therefore there is
approximately

GPST = GLOT+m−3h,

where m is the number of “leap seconds” between GPS and GLONASS (UTC) time
and is given in the GLONASS ephemeris. m is indeed the leap seconds since GPS
standard epoch (1980 January 6, 0h).

Galileo system time (GST) will be maintained by a number of UTC laboratory
clocks. GST and GPST are time systems of various UTC laboratories. After the
offset of GST and GPST is made available to the user, the interoperability will be
ensured.
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