1 | !ifort -o azi.exe azi.f90
|
---|
2 | !
|
---|
3 | PROGRAM azi
|
---|
4 |
|
---|
5 | IMPLICIT none
|
---|
6 |
|
---|
7 | INTEGER, PARAMETER :: wp=KIND(1.0D0)
|
---|
8 | REAL(KIND=wp), PARAMETER :: pi=4.d0*ATAN(1.d0), dtor=pi/180.d0, rad2deg=1.0d0/dtor
|
---|
9 | REAL(KIND=wp), PARAMETER :: r_earth=6.4d6
|
---|
10 |
|
---|
11 | INTEGER, PARAMETER :: npts=1
|
---|
12 | INTEGER :: i
|
---|
13 |
|
---|
14 | REAL(KIND=wp), DIMENSION(npts,3) :: r_leo ! in ECF coords
|
---|
15 | REAL(KIND=wp), DIMENSION(npts) :: rad_leo, lon_leo, lat_leo ! in ECF coords
|
---|
16 |
|
---|
17 | REAL(KIND=wp), DIMENSION(npts,3) :: r_gns ! in ECF coords
|
---|
18 | REAL(KIND=wp), DIMENSION(npts) :: rad_gns, lon_gns, lat_gns ! in ECF coords
|
---|
19 |
|
---|
20 | REAL(KIND=wp), DIMENSION(3), PARAMETER :: pa=(/ 0.0d0, 0.0d0, 1.0d0 /)
|
---|
21 | REAL(KIND=wp), DIMENSION(npts,3) :: perigee
|
---|
22 | REAL(KIND=wp) :: slta, ro, alpha, theta
|
---|
23 | REAL(KIND=wp), DIMENSION(npts) :: azimuth_tp, azimuth_ropp, azimuth_gpac
|
---|
24 |
|
---|
25 | CHARACTER(LEN=256) :: title
|
---|
26 |
|
---|
27 | ! 1.1 Define satellite positions (ECF coordinates)
|
---|
28 | ! ------------------------------------------------
|
---|
29 |
|
---|
30 | DO i=1,npts
|
---|
31 |
|
---|
32 | ! title = 'LEO due west of GNS'
|
---|
33 | ! rad_leo(i) = r_earth + 800.0d3 ; lat_leo(i) = 0.0d0 * dtor ; lon_leo(i) = -10.d0 * dtor
|
---|
34 | ! rad_gns(i) = r_earth + 20000.0d3 ; lat_gns(i) = 0.0d0 * dtor ; lon_gns(i) = 90.d0 * dtor
|
---|
35 |
|
---|
36 | ! title = 'LEO due east of GNS'
|
---|
37 | ! rad_leo(i) = r_earth + 800.0d3 ; lat_leo(i) = 0.0d0 * dtor ; lon_leo(i) = 10.d0 * dtor
|
---|
38 | ! rad_gns(i) = r_earth + 20000.0d3 ; lat_gns(i) = 0.0d0 * dtor ; lon_gns(i) = -90.d0 * dtor
|
---|
39 |
|
---|
40 | title = 'LEO due north of GNS'
|
---|
41 | rad_leo(i) = r_earth + 800.0d3 ; lat_leo(i) = 10.0d0 * dtor ; lon_leo(i) = 0.d0 * dtor
|
---|
42 | rad_gns(i) = r_earth + 20000.0d3 ; lat_gns(i) = -10.0d0 * dtor ; lon_gns(i) = 0.d0 * dtor
|
---|
43 |
|
---|
44 | ! title = 'LEO due south of GNS'
|
---|
45 | ! rad_leo(i) = r_earth + 800.0d3 ; lat_leo(i) = -10.0d0 * dtor ; lon_leo(i) = 0.d0 * dtor
|
---|
46 | ! rad_gns(i) = r_earth + 20000.0d3 ; lat_gns(i) = 10.0d0 * dtor ; lon_gns(i) = 0.d0 * dtor
|
---|
47 |
|
---|
48 | ! title = 'LEO and GEO as in 1st picture of #233'
|
---|
49 | ! rad_leo(i) = r_earth + 800.0d3 ; lat_leo(i) = 55.0d0 * dtor ; lon_leo(i) = -25.d0 * dtor
|
---|
50 | ! rad_gns(i) = r_earth + 20000.0d3 ; lat_gns(i) = -50.0d0 * dtor ; lon_gns(i) = 0.d0 * dtor
|
---|
51 |
|
---|
52 | ! title = 'LEO and GEO as in 2nd picture of #233'
|
---|
53 | ! rad_leo(i) = r_earth + 800.0d3 ; lat_leo(i) = 60.0d0 * dtor ; lon_leo(i) = -40.d0 * dtor
|
---|
54 | ! rad_gns(i) = r_earth + 20000.0d3 ; lat_gns(i) = 5.0d0 * dtor ; lon_gns(i) = -170.d0 * dtor
|
---|
55 |
|
---|
56 |
|
---|
57 | r_leo(i,:) = rad_leo(i) * (/ COS(lon_leo(i))*COS(lat_leo(i)), SIN(lon_leo(i))*COS(lat_leo(i)), SIN(lat_leo(i)) /)
|
---|
58 |
|
---|
59 | r_gns(i,:) = rad_gns(i) * (/ COS(lon_gns(i))*COS(lat_gns(i)), SIN(lon_gns(i))*COS(lat_gns(i)), SIN(lat_gns(i)) /)
|
---|
60 |
|
---|
61 |
|
---|
62 | ! 1.2 Determine ray tangent points
|
---|
63 | ! --------------------------------
|
---|
64 |
|
---|
65 | slta = impact_parameter(r_leo(i,:), r_gns(i,:))
|
---|
66 | ro = SQRT(DOT_PRODUCT(r_leo(i,:), r_leo(i,:)))
|
---|
67 | alpha = ACOS(slta/ro)
|
---|
68 |
|
---|
69 | perigee(i,:) = rotate(r_leo(i,:), vector_product(r_leo(i,:), r_gns(i,:)), alpha) * (slta/ro)
|
---|
70 |
|
---|
71 | PRINT*,'slta,ro,alpha,perigee = ', slta,ro,alpha,perigee(i,:)
|
---|
72 |
|
---|
73 | ENDDO
|
---|
74 |
|
---|
75 |
|
---|
76 | ! 1.4 Cross-section azimuth at tangent point as in ROPP
|
---|
77 | ! -----------------------------------------------------
|
---|
78 |
|
---|
79 | DO i=1,size(r_leo,1)
|
---|
80 |
|
---|
81 | theta = vector_angle(vector_product(r_gns(i,:),r_leo(i,:)), &
|
---|
82 | vector_product(pa, perigee(i,:)))
|
---|
83 |
|
---|
84 | PRINT*,'theta_ropp = ', theta
|
---|
85 |
|
---|
86 | PRINT*,'DOT_PRODUCT(r_gns(i,:)-r_leo(i,:),vector_product(pa, perigee(i,:))) = ', &
|
---|
87 | DOT_PRODUCT(r_gns(i,:)-r_leo(i,:),vector_product(pa, perigee(i,:)))
|
---|
88 |
|
---|
89 | if (DOT_PRODUCT(r_gns(i,:)-r_leo(i,:),vector_product(pa, perigee(i,:))) < 0) THEN
|
---|
90 | theta = 2.0d0*Pi - theta
|
---|
91 | endif
|
---|
92 |
|
---|
93 | PRINT*,'theta_ropp = ', theta
|
---|
94 |
|
---|
95 | azimuth_tp(i) = theta * rad2deg
|
---|
96 |
|
---|
97 | azimuth_ropp(i) = azimuth_tp(i)
|
---|
98 |
|
---|
99 | ENDDO
|
---|
100 |
|
---|
101 | ! 1.4 Cross-section azimuth at tangent point as in GPAC
|
---|
102 | ! -----------------------------------------------------
|
---|
103 |
|
---|
104 | DO i=1,size(r_leo,1)
|
---|
105 |
|
---|
106 | theta = vector_angle(vector_product(perigee(i,:), pa), &
|
---|
107 | vector_product(r_gns(i,:),r_leo(i,:)), -perigee(i,:))
|
---|
108 |
|
---|
109 | PRINT*,'theta_gpac = ', theta
|
---|
110 |
|
---|
111 | azimuth_tp(i) = theta * rad2deg
|
---|
112 |
|
---|
113 | PRINT*,'azimuth_gpac = ', azimuth_tp(i)
|
---|
114 |
|
---|
115 | if (azimuth_tp(i) < 0.0_wp ) azimuth_tp(i) = azimuth_tp(i) + 360.0_wp
|
---|
116 |
|
---|
117 | PRINT*,'azimuth_gpac = ', azimuth_tp(i)
|
---|
118 |
|
---|
119 | azimuth_gpac(i) = azimuth_tp(i)
|
---|
120 |
|
---|
121 | ENDDO
|
---|
122 |
|
---|
123 |
|
---|
124 | PRINT*, '*** ' // TRIM(title) // ' ***'
|
---|
125 | PRINT*, 'azimuth_ropp = ', azimuth_ropp
|
---|
126 | PRINT*, 'azimuth_gpac = ', azimuth_gpac
|
---|
127 |
|
---|
128 |
|
---|
129 |
|
---|
130 | CONTAINS
|
---|
131 |
|
---|
132 | !****f* Coordinates/rotate
|
---|
133 | !
|
---|
134 | ! NAME
|
---|
135 | ! rotate - Rotate a vector in cartesian coordinates around
|
---|
136 | ! a given axis by a given angle
|
---|
137 | !
|
---|
138 | ! SYNOPSIS
|
---|
139 | ! Rotate = rotate(X, A, phi)
|
---|
140 | !
|
---|
141 | ! DESCRIPTION
|
---|
142 | ! This function rotates a vector X around a given axis A by angle phi.
|
---|
143 | ! N*(N,X) + [N,X]*Sin(Phi) + (X-N*(N,X))*Cos(Phi), where N=A/|A|
|
---|
144 | !
|
---|
145 | ! INPUTS
|
---|
146 | ! X Vector to rotate
|
---|
147 | ! A Rotation axis
|
---|
148 | ! Phi Rotation angle (rad)
|
---|
149 | !
|
---|
150 | ! OUTPUT
|
---|
151 | ! Rotate Rotated vector
|
---|
152 | !
|
---|
153 | ! NOTES
|
---|
154 | !
|
---|
155 | ! SEE ALSO
|
---|
156 | !
|
---|
157 | ! REFERENCES
|
---|
158 | !
|
---|
159 | ! AUTHOR
|
---|
160 | ! Met Office, Exeter, UK.
|
---|
161 | ! Any comments on this software should be given via the ROM SAF
|
---|
162 | ! Helpdesk at http://www.romsaf.org
|
---|
163 | !
|
---|
164 | ! COPYRIGHT
|
---|
165 | ! (c) EUMETSAT. All rights reserved.
|
---|
166 | ! For further details please refer to the file COPYRIGHT
|
---|
167 | ! which you should have received as part of this distribution.
|
---|
168 | !
|
---|
169 | !****
|
---|
170 |
|
---|
171 | function rotate(X, A, Phi) result(R)
|
---|
172 |
|
---|
173 | ! 1.1 Declarations
|
---|
174 | ! ----------------
|
---|
175 |
|
---|
176 | implicit none
|
---|
177 |
|
---|
178 | real(wp), dimension(3), intent(in) :: X ! input vector
|
---|
179 | real(wp), dimension(3), intent(in) :: A ! rotation axis
|
---|
180 | real(wp), intent(in) :: phi ! rotation angle
|
---|
181 | real(wp), dimension(3) :: R ! rotated vector
|
---|
182 |
|
---|
183 | real(wp), dimension(3) :: norm ! normed rotation axis
|
---|
184 |
|
---|
185 | ! 1.2 Frame rotation
|
---|
186 | ! ------------------
|
---|
187 |
|
---|
188 | ! N*(N,X) + [N,X]*Sin(Phi) + (X-N*(N,X))*Cos(Phi), where N=A/|A|
|
---|
189 |
|
---|
190 | norm = A(:)/Sqrt(Dot_Product(A(:), A(:)))
|
---|
191 |
|
---|
192 | R = norm*(Dot_Product(norm, X)) + vector_product(norm, X)*sin(phi) &
|
---|
193 | + (X - norm*Dot_Product(norm,X))*cos(phi)
|
---|
194 |
|
---|
195 | end function rotate
|
---|
196 |
|
---|
197 | !****f* Coordinates/vector_product
|
---|
198 | !
|
---|
199 | ! NAME
|
---|
200 | ! vector_product - Compute a vector product of two cartesian vectors
|
---|
201 | !
|
---|
202 | ! SYNOPSIS
|
---|
203 | ! product = vector_product(X, Y)
|
---|
204 | !
|
---|
205 | ! INPUTS
|
---|
206 | ! X Vector 1
|
---|
207 | ! Y Vector 2
|
---|
208 | !
|
---|
209 | ! OUTPUT
|
---|
210 | ! Product Vector product
|
---|
211 | !
|
---|
212 | ! AUTHOR
|
---|
213 | ! Met Office, Exeter, UK.
|
---|
214 | ! Any comments on this software should be given via the ROM SAF
|
---|
215 | ! Helpdesk at http://www.romsaf.org
|
---|
216 | !
|
---|
217 | ! COPYRIGHT
|
---|
218 | ! (c) EUMETSAT. All rights reserved.
|
---|
219 | ! For further details please refer to the file COPYRIGHT
|
---|
220 | ! which you should have received as part of this distribution.
|
---|
221 | !
|
---|
222 | !****
|
---|
223 |
|
---|
224 | function vector_product(X, Y) result(product)
|
---|
225 |
|
---|
226 | real(wp), dimension(3), intent(in) :: X
|
---|
227 | real(wp), dimension(3), intent(in) :: Y
|
---|
228 | real(wp), dimension(3) :: product
|
---|
229 |
|
---|
230 | product = (/ X(2)*Y(3) - X(3)*Y(2), &
|
---|
231 | X(3)*Y(1) - X(1)*Y(3), &
|
---|
232 | X(1)*Y(2) - X(2)*Y(1) /)
|
---|
233 |
|
---|
234 | end function vector_product
|
---|
235 |
|
---|
236 | !****f* Coordinates/vector_angle
|
---|
237 | !
|
---|
238 | ! NAME
|
---|
239 | ! vector_angle - Find the angle between two cartesian vectors
|
---|
240 | !
|
---|
241 | ! SYNOPSIS
|
---|
242 | ! angle = vector_angle(X, Y, A)
|
---|
243 | !
|
---|
244 | ! INPUTS
|
---|
245 | ! X Vector 1
|
---|
246 | ! Y Vector 2
|
---|
247 | ! A Orientation axis (optional)
|
---|
248 | !
|
---|
249 | ! OUTPUT
|
---|
250 | ! Angle Angle between vectors
|
---|
251 | !
|
---|
252 | ! AUTHOR
|
---|
253 | ! Met Office, Exeter, UK.
|
---|
254 | ! Any comments on this software should be given via the ROM SAF
|
---|
255 | ! Helpdesk at http://www.romsaf.org
|
---|
256 | !
|
---|
257 | ! COPYRIGHT
|
---|
258 | ! (c) EUMETSAT. All rights reserved.
|
---|
259 | ! For further details please refer to the file COPYRIGHT
|
---|
260 | ! which you should have received as part of this distribution.
|
---|
261 | !
|
---|
262 | !****
|
---|
263 |
|
---|
264 | function vector_angle(X, Y, A) result(angle)
|
---|
265 |
|
---|
266 | real(wp), dimension(3), intent(in) :: X
|
---|
267 | real(wp), dimension(3), intent(in) :: Y
|
---|
268 | real(wp), dimension(3), optional, intent(in) :: A
|
---|
269 | real(wp) :: angle
|
---|
270 |
|
---|
271 | real(wp), dimension(3) :: n, alpha, beta, gamma
|
---|
272 | real(wp) :: nn
|
---|
273 |
|
---|
274 | if (present(A)) then
|
---|
275 | n = A
|
---|
276 | else
|
---|
277 | n = vector_product(X, Y)
|
---|
278 | endif
|
---|
279 |
|
---|
280 | nn = Dot_Product(n, n)
|
---|
281 |
|
---|
282 | if (nn == 0) then
|
---|
283 | angle = 0.0_wp
|
---|
284 | else
|
---|
285 | n = n/sqrt(nn)
|
---|
286 | alpha = vector_product(n, X)
|
---|
287 |
|
---|
288 | beta = X - Dot_Product(n, X) * n
|
---|
289 | gamma = Y - Dot_Product(n, Y) * n
|
---|
290 | angle = atan2(Dot_Product(alpha,gamma), Dot_Product(beta,gamma))
|
---|
291 | endif
|
---|
292 |
|
---|
293 | end function vector_angle
|
---|
294 |
|
---|
295 |
|
---|
296 | function impact_parameter(r_leo, r_gns, bangle) result(impact)
|
---|
297 |
|
---|
298 | ! 1.1 Declarations
|
---|
299 | ! ----------------
|
---|
300 |
|
---|
301 | implicit none
|
---|
302 |
|
---|
303 | real(wp), dimension(3), intent(in) :: r_leo ! LEO position vector (ECF)
|
---|
304 | real(wp), dimension(3), intent(in) :: r_gns ! GPS position vector (ECF)
|
---|
305 | real(wp), optional, intent(in) :: bangle ! Bending angle
|
---|
306 | real(wp) :: impact ! Impact parameter
|
---|
307 |
|
---|
308 | real(wp) :: r0 ! Length of r_leo
|
---|
309 | real(wp) :: r1 ! Length of r_gns
|
---|
310 | real(wp) :: omega ! Complementary to r_leo^r_gns - bangle
|
---|
311 | real(wp) :: talpha ! Tan(r_leo^(r_leo-r_gns))
|
---|
312 |
|
---|
313 | ! 1.2 Length of vectors r_leo and r_gns
|
---|
314 | ! -------------------------------------
|
---|
315 |
|
---|
316 | r0 = Sqrt(Dot_Product(r_leo, r_leo))
|
---|
317 | r1 = Sqrt(Dot_Product(r_gns, r_gns))
|
---|
318 |
|
---|
319 | ! 1.3 Find vector angle between r_leo and r_gns
|
---|
320 | ! ---------------------------------------------
|
---|
321 |
|
---|
322 | omega = Pi - vector_angle(r_leo, r_gns)
|
---|
323 |
|
---|
324 | if (present(bangle)) then
|
---|
325 | omega = omega + bangle
|
---|
326 | endif
|
---|
327 |
|
---|
328 | ! 1.4 Determine impact parameter by trigonometry
|
---|
329 | ! ----------------------------------------------
|
---|
330 |
|
---|
331 | talpha = r1*Sin(omega) / (r0 + r1*Cos(omega))
|
---|
332 |
|
---|
333 | impact = r0*talpha / Sqrt(1.0_wp + talpha**2)
|
---|
334 |
|
---|
335 | end function impact_parameter
|
---|
336 |
|
---|
337 |
|
---|
338 |
|
---|
339 |
|
---|
340 | end program azi
|
---|
341 |
|
---|
342 |
|
---|
343 |
|
---|
344 |
|
---|
345 |
|
---|
346 |
|
---|
347 |
|
---|
348 |
|
---|
349 |
|
---|