Ticket #433: cosmic_pp_cntl.cf

File cosmic_pp_cntl.cf, 8.1 KB (added by Ian Culverwell, 9 years ago)

cosmic_pp_cntl.cf

Line 
1# $Id: $
2
3#****c* Configuration Files/cosmic_pp.cf *
4#
5# NAME
6# default_pp.cf - COSMIC data configuration file for pre-processor
7# implementations in ROPP
8#
9# SYNOPSIS
10# <pp_program> ... -c cosmic_pp.cf ...
11#
12# DESCRIPTION
13# This file reflects the configuration for the PP
14# implementations within ROPP suitable for use with COSMIC data.
15#
16# NOTES
17#
18# AUTHOR
19# Met Office, Exeter, UK.
20# Any comments on this software should be given via the ROM SAF
21# Helpdesk at http://www.romsaf.org
22#
23# COPYRIGHT
24# (c) EUMETSAT. All rights reserved.
25# For further details please refer to the file COPYRIGHT
26# which you should have received as part of this distribution.
27#
28#****
29
30#-------------------------------------------------------------------------------
31# 0. Output options
32#-------------------------------------------------------------------------------
33output_tdry = .true. ! Flag to output dry temperature
34
35output_diag = .false. ! Flag to output additional diagnostics
36
37#-------------------------------------------------------------------------------
38# 1. Excess phase to bending angle processing
39#-------------------------------------------------------------------------------
40
41# 1.1 Occultation processing method
42# ---------------------------------
43
44# GO - use GEOMETRIC OPTICS processing to derive bending angle as a function of
45# impact parameter from excess phase as a function of time.
46# WO - use WAVE OPTICS (CT2 algorithm) processing to derive bending angle as a
47# function of impact parameter from excess phase as a function of time.
48
49occ_method = WO
50
51# 1.2 Filtering method
52# --------------------
53
54# optest - use OPTIMAL ESTIMATION: solution of integral equation
55# slpoly - use SLIDING POLYNOMIAL
56
57filter_method = slpoly
58
59# 1.3 Smoothing bending angle profile
60# -----------------------------------
61
62
63fw_go_smooth = 3000.0 # Filter width for smoothed GO bending angles (m)
64
65fw_go_full = 3000.0 # Filter width for full resolution GO bending angles (m)
66
67fw_wo = 2000.0 # Filter width for wave optics bending angle above 7 km(m)
68
69fw_low = -1000.0 # Filter width for wave optics bending angle below 7 km (m)
70
71# 1.4 Maximum height for wave optics processing
72# ---------------------------------------------
73
74hmax_wo = 25000.0 # Maximum height for wave optics processing (m)
75
76# 1.5 Data cut-off limits
77# -----------------------
78
79Acut = 0.0 # Fractional cut-off limit for amplitude
80
81Pcut = -2000.0 # Cut-off limit for impact height
82
83Bcut = 0.1 # Cut-off limit for bending angle
84
85Hcut = -250000.0 # Cut-off limit for straight-line tangent altitude
86
87# 1.6 CT2 options
88# ---------------
89
90CFF = 3 # Complex field filter flag (CFF = 'Pa')
91
92dsh = 200.0 # Shadow border width (m)
93
94# 1.7 Degraded L2 data flag
95# -------------------------
96
97opt_DL2 = .true.
98
99# 1.8 Compute and output spectra flag
100# -----------------------------------
101
102opt_spectra = .false.
103
104# 1.9 Paths to EGM96 geoid model coefficients and corrections file
105# ----------------------------------------------------------------
106
107egm96 = ../data/egm96.dat # EGM96 coefficients file
108
109corr_egm96 = ../data/corrcoef.dat # Correction coefficients file
110
111#-------------------------------------------------------------------------------
112# 1. Ionospheric correction processing
113#-------------------------------------------------------------------------------
114
115# 1.1 Ionospheric correction method
116# ---------------------------------
117
118# GMSIS - use MSIS climatology bending angle (searching global MSIS profiles
119# for best fit profile to obs) in ionospheric correction,
120# statistical optimization and bending angle to refractivity inversion.
121#
122# MSIS - use MSIS climatology bending angle in ionospheric correction,
123# statistical optimization and bending angle to refractivity inversion.
124#
125# BG - use climatology from a specified input file containing
126# background temperature, pressure and humidity
127# (e.g. from an NWP analysis). The input filename can be specified
128# using the '-bfile' command line argument or setting 'bfile' (see 1.5).
129#
130# NONE - linear combination of L1 and L2 bending angles in ionospheric
131# correction, no additional information above observed profile top
132# in the inverse Abel to compute refractivity.
133
134method = GMSIS # Ionospheric correction method
135
136# 1.2 Abel integral method
137# ------------------------
138
139# LIN - assume linear variation of bending angle and ln(n) between
140# observation levels. This algorithm is used in ROM SAF NRT processing
141#
142# EXP - assume exponential variation of bending angle and ln(n) between
143# observation levels. This algorithm is used in ropp_fm module.
144
145abel = LIN
146
147# 1.3 Statistical optimisation method
148# -----------------------------------
149
150# SO - statistical optimisation.
151# LCSO - linear combination plus statistical optimisation.
152
153so_method = so
154
155# 1.4 MSIS model coefficients file
156# --------------------------------
157
158mfile = MSIS_coeff.nc # Model coefficients file
159
160# 1.5 Background model temperature, humidity, pressure file
161# ---------------------------------------------------------
162
163bfile = BG_file.nc # Background meteorology profile file (method=BG)
164
165#-------------------------------------------------------------------------------
166# 2. Impact parameter grid
167#-------------------------------------------------------------------------------
168
169# The ionospheric correction interpolates L1 and L2 bending angle profiles onto a
170# standard grid.
171
172dpi = 100.0 # Step of standard impact parameter grid (m)
173
174#-------------------------------------------------------------------------------
175# 3. Smoothing bending angle profile
176#-------------------------------------------------------------------------------
177
178# A smoothed bending angle profile is derived compute the fit of observed bending
179# angles to the model bending angle profile.
180
181np_smooth = 3 # Polynomial degree for smoothing regression
182
183fw_smooth = 1000.0 # Filter width for smoothing profile
184
185#-------------------------------------------------------------------------------
186# 4. Model bending angle profile fit to observations
187#-------------------------------------------------------------------------------
188
189# To avoid systematic deviations from the observed profile with MSIS climatology,
190# the model profile is scaled to the observed profile by a fitting coefficient,
191# computed by regression.
192
193nparm_fit = 2 # Number of parameters for model fit regression
194
195hmin_fit = 20000.0 # Lower limit for model fit regression
196
197hmax_fit = 70000.0 # Upper limit for model fit regression
198
199omega_fit = 0.3 # A priori standard deviation of regression factor
200
201#-------------------------------------------------------------------------------
202# 5. Ionospheric correction and statistical optimization
203#-------------------------------------------------------------------------------
204
205# The method described by Gorbunov (2002) is implemented to perform ionospheric
206# correction with statistical optimization.
207
208f_width = 2000.0 # Ionospheric correction filter width
209
210delta_p = 20.0 # Step of homogeneous impact parameter grid
211
212s_smooth = 2000.0 # External ionospheric smoothing scale
213
214z_ion = 50000.0 # Lower height limit of ionospheric signal
215
216z_str = 35000.0 # Lower height limit of stratospheric signal
217
218z_ltr = 12000.0 # Lower height limit of tropospheric signal
219
220n_smooth = 11 # Number of points for smoothing (must be odd)
221
222model_err = -0.5 # A priori model error std.dev. (dyn.est. if negative)
223
224#-------------------------------------------------------------------------------
225# 6. Bending angle inversion to refractivity
226#-------------------------------------------------------------------------------
227
228# The Abel inversion is computed to retrieve refractivity from corrected
229# bending angles. If method=MSIS, the corrected bending angle profile is extended
230# using MSIS data above the observed profile top.
231
232ztop_invert = 150000.0 # Height of atmosphere top for inversion
233
234dzh_invert = 50.0 # Step of inversion grid above observation top
235
236dzr_invert = 20000.0 # Interval for regression in inversion
237