Ticket #433: grassaf_invert_cntl.cf

File grassaf_invert_cntl.cf, 8.1 KB (added by Ian Culverwell, 9 years ago)

grassaf_invert_cntl.cf

Line 
1# $Id: $
2
3#****c* Configuration Files/romsaf_invert.cf *
4#
5# NAME
6# romsaf_invert.cf - ROM SAF inversion default parameter settings
7#
8# SYNOPSIS
9# <pp_program> ... -c romsaf_invert.cf ...
10#
11# DESCRIPTION
12# This file reflects the configuration for the PP
13# implementations within ROPP consistent with ROM SAF inversion data.
14#
15# NOTES
16#
17# AUTHOR
18# Met Office, Exeter, UK.
19# Any comments on this software should be given via the ROM SAF
20# Helpdesk at http://www.romsaf.org
21#
22# COPYRIGHT
23# (c) EUMETSAT. All rights reserved.
24# For further details please refer to the file COPYRIGHT
25# which you should have received as part of this distribution.
26#
27#****
28
29#-------------------------------------------------------------------------------
30# 0. Output options
31#-------------------------------------------------------------------------------
32output_tdry = .true. ! Flag to output dry temperature
33
34output_diag = .false. ! Flag to output additional diagnostics
35
36#-------------------------------------------------------------------------------
37# 1. Excess phase to bending angle processing
38#-------------------------------------------------------------------------------
39
40# 1.1 Occultation processing method
41# ---------------------------------
42
43# GO - use GEOMETRIC OPTICS processing to derive bending angle as a function of
44# impact parameter from excess phase as a function of time.
45# WO - use WAVE OPTICS (CT2 algorithm) processing to derive bending angle as a
46# function of impact parameter from excess phase as a function of time.
47
48occ_method = WO
49
50# 1.2 Filtering method
51# --------------------
52
53# optest - use OPTIMAL ESTIMATION: solution of integral equation
54# slpoly - use SLIDING POLYNOMIAL
55
56filter_method = optest
57
58# 1.3 Smoothing bending angle profile
59# -----------------------------------
60
61
62fw_go_smooth = 3000.0 # Filter width for smoothed GO bending angles (m)
63
64fw_go_full = 3000.0 # Filter width for full resolution GO bending angles (m)
65
66fw_wo = 2000.0 # Filter width for wave optics bending angle above 7 km(m)
67
68fw_low = -1000.0 # Filter width for wave optics bending angle below 7 km (m)
69
70# 1.4 Maximum height for wave optics processing
71# ---------------------------------------------
72
73hmax_wo = 25000.0 # Maximum height for wave optics processing (m)
74
75# 1.5 Data cut-off limits
76# -----------------------
77
78Acut = 0.0 # Fractional cut-off limit for amplitude
79
80Pcut = 0.0 # Cut-off limit for impact height
81
82Bcut = 0.2 # Cut-off limit for bending angle
83
84Hcut = -999000.0 # Cut-off limit for straight-line tangent altitude
85
86# 1.6 CT2 options
87# ---------------
88
89CFF = 2 # Complex field filter flag (CFF = 'P')
90
91dsh = 100.0 # Shadow border width (m)
92
93# 1.7 Degraded L2 data flag
94# -------------------------
95
96opt_DL2 = .true.
97
98# 1.8 Compute and output spectra flag
99# -----------------------------------
100
101opt_spectra = .false.
102
103# 1.9 Paths to EGM96 geoid model coefficients and corrections file
104# ----------------------------------------------------------------
105
106egm96 = ../data/egm96.dat # EGM96 coefficients file
107
108corr_egm96 = ../data/corrcoef.dat # Correction coefficients file
109
110#-------------------------------------------------------------------------------
111# 1. Ionospheric correction processing
112#-------------------------------------------------------------------------------
113
114# 1.1 Ionospheric correction method
115# ---------------------------------
116
117# GMSIS - use MSIS climatology bending angle (searching global MSIS profiles
118# for best fit profile to obs) in ionospheric correction,
119# statistical optimization and bending angle to refractivity inversion.
120#
121# MSIS - use MSIS climatology bending angle in ionospheric correction,
122# statistical optimization and bending angle to refractivity inversion.
123#
124# BG - use climatology from a specified input file containing
125# background temperature, pressure and humidity
126# (e.g. from an NWP analysis). The input filename can be specified
127# using the '-bfile' command line argument or setting 'bfile' (see 1.5).
128#
129# NONE - linear combination of L1 and L2 bending angles in ionospheric
130# correction, no additional information above observed profile top
131# in the inverse Abel to compute refractivity.
132
133method = GMSIS # Ionospheric correction method
134
135# 1.2 Abel integral method
136# ------------------------
137
138# LIN - assume linear variation of bending angle and ln(n) between
139# observation levels. This algorithm is used in ROM SAF NRT processing
140#
141# EXP - assume exponential variation of bending angle and ln(n) between
142# observation levels. This algorithm is used in ropp_fm module.
143
144abel = LIN
145
146# 1.3 Statistical optimisation method
147# -----------------------------------
148
149# SO - statistical optimisation.
150# LCSO - linear combination plus statistical optimisation.
151
152so_method = so
153
154# 1.4 MSIS model coefficients file
155# --------------------------------
156
157mfile = MSIS_coeff.nc # Model coefficients file
158
159# 1.5 Background model temperature, humidity, pressure file
160# ---------------------------------------------------------
161
162bfile = BG_file.nc # Background meteorology profile file (method=BG)
163
164#-------------------------------------------------------------------------------
165# 2. Impact parameter grid
166#-------------------------------------------------------------------------------
167
168# The ionospheric correction interpolates L1 and L2 bending angle profiles onto a
169# standard grid.
170
171dpi = 100.0 # Step of standard impact parameter grid (m)
172
173#-------------------------------------------------------------------------------
174# 3. Smoothing bending angle profile
175#-------------------------------------------------------------------------------
176
177# A smoothed bending angle profile is derived compute the fit of observed bending
178# angles to the model bending angle profile.
179
180np_smooth = 3 # Polynomial degree for smoothing regression
181
182fw_smooth = 1000.0 # Filter width for smoothing profile
183
184#-------------------------------------------------------------------------------
185# 4. Model bending angle profile fit to observations
186#-------------------------------------------------------------------------------
187
188# To avoid systematic deviations from the observed profile with MSIS climatology,
189# the model profile is scaled to the observed profile by a fitting coefficient,
190# computed by regression.
191
192nparm_fit = 2 # Number of parameters for model fit regression
193
194hmin_fit = 40000.0 # Lower limit for model fit regression
195
196hmax_fit = 60000.0 # Upper limit for model fit regression
197
198omega_fit = 0.3 # A priori standard deviation of regression factor
199
200#-------------------------------------------------------------------------------
201# 5. Ionospheric correction and statistical optimization
202#-------------------------------------------------------------------------------
203
204# The method described by Gorbunov (2002) is implemented to perform ionospheric
205# correction with statistical optimization.
206
207f_width = 250.0 # Ionospheric correction filter width
208
209delta_p = 100.0 # Step of homogeneous impact parameter grid
210
211s_smooth = 2000.0 # External ionospheric smoothing scale
212
213z_ion = 50000.0 # Lower height limit of ionospheric signal
214
215z_str = 35000.0 # Lower height limit of stratospheric signal
216
217z_ltr = 12000.0 # Lower height limit of tropospheric signal
218
219n_smooth = 11 # Number of points for smoothing (must be odd)
220
221model_err = -0.5 # A priori model error std.dev. (dyn.est. if negative)
222
223#-------------------------------------------------------------------------------
224# 6. Bending angle inversion to refractivity
225#-------------------------------------------------------------------------------
226
227# The Abel inversion is computed to retrieve refractivity from corrected
228# bending angles. If method=MSIS, the corrected bending angle profile is extended
229# using MSIS data above the observed profile top.
230
231ztop_invert = 150000.0 # Height of atmosphere top for inversion
232
233dzh_invert = 50.0 # Step of inversion grid above observation top
234
235dzr_invert = 20000.0 # Interval for regression in inversion
236