| 1 | ! $Id: ropp_1dvar_levmarq.f90 4452 2015-01-29 14:42:02Z idculv $
|
|---|
| 2 |
|
|---|
| 3 | !****s* 1DVar/ropp_1dvar_levmarq
|
|---|
| 4 | !
|
|---|
| 5 | ! NAME
|
|---|
| 6 | ! ropp_1dvar_levmarq - Solve the 1DVar for background data using the
|
|---|
| 7 | ! Levenberg-Marquardt minimiser
|
|---|
| 8 | !
|
|---|
| 9 | ! SYNOPSIS
|
|---|
| 10 | ! CALL ropp_1dvar_levmarq(obs, bg, state, config, diag)
|
|---|
| 11 | !
|
|---|
| 12 | !
|
|---|
| 13 | ! DESCRIPTION
|
|---|
| 14 | ! This subroutine evaluates a quadratic cost function for a
|
|---|
| 15 | ! variational data assimilation procedure.
|
|---|
| 16 | !
|
|---|
| 17 | ! More specifically, this routine calculates a cost function
|
|---|
| 18 | !
|
|---|
| 19 | ! 1 / | -1 | \
|
|---|
| 20 | ! J = - < y - H(x) | O | y - H(x) > +
|
|---|
| 21 | ! 2 \ | | /
|
|---|
| 22 | !
|
|---|
| 23 | ! 1 / | -1 | \
|
|---|
| 24 | ! - < x - x | B | x - x >
|
|---|
| 25 | ! 2 \ b | | b/
|
|---|
| 26 | !
|
|---|
| 27 | ! where the background state x_b is given by the state vector
|
|---|
| 28 | ! state.
|
|---|
| 29 | !
|
|---|
| 30 | ! A solution for x is obtained by minimising J using the Levenberg-Marquardt
|
|---|
| 31 | ! minimisation method.
|
|---|
| 32 | !
|
|---|
| 33 | ! INPUTS
|
|---|
| 34 | ! obs Observation data structure.
|
|---|
| 35 | ! bg Background data structure.
|
|---|
| 36 | ! state State vector structure.
|
|---|
| 37 | ! config Configuration structure.
|
|---|
| 38 | ! diag Diagnostics structure.
|
|---|
| 39 | !
|
|---|
| 40 | ! OUTPUT
|
|---|
| 41 | ! state
|
|---|
| 42 | ! diag
|
|---|
| 43 | !
|
|---|
| 44 | ! REFERENCES
|
|---|
| 45 | ! Madsen, K., Nielsen, H.B. & Tingleff, O., Methods for Non-Linear Least
|
|---|
| 46 | ! Squares Problems, Lyngby, Denmark, 2004. Available at:
|
|---|
| 47 | ! http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3215
|
|---|
| 48 | ! Nielsen, H.B., Damping Parameter in Marquardtâs Method, Lyngby, Denmark,
|
|---|
| 49 | ! 1999. Available at:
|
|---|
| 50 | ! http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=648
|
|---|
| 51 | !
|
|---|
| 52 | ! AUTHOR
|
|---|
| 53 | ! Met Office, Exeter, UK.
|
|---|
| 54 | ! Any comments on this software should be given via the ROM SAF
|
|---|
| 55 | ! Helpdesk at http://www.romsaf.org
|
|---|
| 56 | !
|
|---|
| 57 | ! COPYRIGHT
|
|---|
| 58 | ! (c) EUMETSAT. All rights reserved.
|
|---|
| 59 | ! For further details please refer to the file COPYRIGHT
|
|---|
| 60 | ! which you should have received as part of this distribution.
|
|---|
| 61 | !
|
|---|
| 62 | !****
|
|---|
| 63 |
|
|---|
| 64 | !-------------------------------------------------------------------------------
|
|---|
| 65 | ! 1. Bending angle
|
|---|
| 66 | !-------------------------------------------------------------------------------
|
|---|
| 67 |
|
|---|
| 68 | SUBROUTINE ropp_1dvar_levmarq_bangle(obs, bg, state, config, diag)
|
|---|
| 69 |
|
|---|
| 70 | ! 1.1 Declarations
|
|---|
| 71 | ! ----------------
|
|---|
| 72 |
|
|---|
| 73 | USE typesizes, ONLY: wp => EightByteReal
|
|---|
| 74 | USE ropp_utils
|
|---|
| 75 | USE ropp_fm
|
|---|
| 76 | USE ropp_1dvar, not_this => ropp_1dvar_levmarq_bangle
|
|---|
| 77 | USE matrix
|
|---|
| 78 |
|
|---|
| 79 | IMPLICIT NONE
|
|---|
| 80 |
|
|---|
| 81 | TYPE(Obs1dBangle), INTENT(inout) :: obs ! Observation data
|
|---|
| 82 | TYPE(State1dFM), INTENT(inout) :: bg ! Background data
|
|---|
| 83 | TYPE(State1dFM), INTENT(inout) :: state ! State vector
|
|---|
| 84 | TYPE(VarConfig), INTENT(in) :: config ! Configuration options
|
|---|
| 85 | TYPE(VarDiag), INTENT(inout) :: diag ! Diagnostic output
|
|---|
| 86 |
|
|---|
| 87 | REAL(wp) :: J ! Cost function value
|
|---|
| 88 | TYPE(State1dFM) :: x ! Control vector
|
|---|
| 89 | TYPE(State1dFM) :: x_old ! Control for LM parameter testing
|
|---|
| 90 | TYPE(Obs1dBangle) :: y ! Forward model obs
|
|---|
| 91 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: K ! K-matrix
|
|---|
| 92 | REAL(wp), DIMENSION(:), ALLOCATABLE :: delta_x ! Change of state
|
|---|
| 93 | REAL(wp), DIMENSION(:), ALLOCATABLE :: delta_y ! Change of observation
|
|---|
| 94 | REAL(wp), DIMENSION(:), ALLOCATABLE :: x_incr ! Increment of the state vector
|
|---|
| 95 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dJ_dx ! Cost function gradient
|
|---|
| 96 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diag_d2J ! Diagonal d2J/dx2
|
|---|
| 97 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: d2J_dx2 ! 2nd derivative cost fn
|
|---|
| 98 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: KO ! K O^-1
|
|---|
| 99 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: Bm1 ! B^-1
|
|---|
| 100 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: Om1 ! O^-1
|
|---|
| 101 | REAL(wp), DIMENSION(:), ALLOCATABLE :: delta_J ! Change of cost fn
|
|---|
| 102 | REAL(wp), DIMENSION(:), ALLOCATABLE :: state_last ! Previous state vector
|
|---|
| 103 | REAL(wp), DIMENSION(:), ALLOCATABLE :: state_sigma ! State std deviation
|
|---|
| 104 | REAL(wp), DIMENSION(:), ALLOCATABLE :: delta_state ! Change of state vector
|
|---|
| 105 | REAL(wp) :: J_last ! Previous cost function
|
|---|
| 106 | REAL(wp) :: J_min ! Minimum cost function
|
|---|
| 107 | INTEGER :: i_pointer ! Value index
|
|---|
| 108 | INTEGER :: i ! Counter
|
|---|
| 109 | INTEGER :: n_iter ! Number of iterations
|
|---|
| 110 | INTEGER :: n_iter_max ! Maximum number of iterations
|
|---|
| 111 | INTEGER :: n_grad ! Number of gradient updates
|
|---|
| 112 | INTEGER :: nobs ! Number of observations
|
|---|
| 113 | INTEGER :: nstate ! No. of state elements
|
|---|
| 114 | REAL(wp) :: mu ! Levenberg-Marquardt factor
|
|---|
| 115 | REAL(wp) :: rho ! Trust region radius
|
|---|
| 116 | REAL(wp) :: beta ! Increment factor for mu
|
|---|
| 117 | REAL(wp) :: gamma ! Decrement factor for mu
|
|---|
| 118 | REAL(wp) :: nu ! Variation factor for mu
|
|---|
| 119 |
|
|---|
| 120 | CHARACTER(len = 4) :: it_str
|
|---|
| 121 | CHARACTER(len = 4) :: gr_str
|
|---|
| 122 | CHARACTER(len = 15) :: ch_str, co_str
|
|---|
| 123 | CHARACTER(len = 256) :: routine
|
|---|
| 124 |
|
|---|
| 125 | ! 1.2 Message handling
|
|---|
| 126 | ! --------------------
|
|---|
| 127 |
|
|---|
| 128 | CALL message_get_routine(routine)
|
|---|
| 129 | CALL message_set_routine('ropp_1dvar_levmarq')
|
|---|
| 130 |
|
|---|
| 131 | ! 1.3 Initialise variables
|
|---|
| 132 | ! ------------------------
|
|---|
| 133 |
|
|---|
| 134 | i_pointer = 0
|
|---|
| 135 | n_grad = 0
|
|---|
| 136 | n_iter = 0
|
|---|
| 137 | n_iter_max = 50
|
|---|
| 138 |
|
|---|
| 139 | mu = 1.0E-2
|
|---|
| 140 | beta = 2.0_wp
|
|---|
| 141 | gamma = 3.0_wp
|
|---|
| 142 | nu = beta
|
|---|
| 143 |
|
|---|
| 144 | J = 0.0_wp
|
|---|
| 145 | J_last = 1.0E30_wp
|
|---|
| 146 | J_min = J_last
|
|---|
| 147 |
|
|---|
| 148 | nstate = SIZE(bg%state)
|
|---|
| 149 | nobs = SIZE(obs%bangle)
|
|---|
| 150 |
|
|---|
| 151 | ALLOCATE(K(nobs, nstate))
|
|---|
| 152 | ALLOCATE(delta_x(nstate))
|
|---|
| 153 | ALLOCATE(delta_y(nobs))
|
|---|
| 154 | ALLOCATE(x_incr(nstate))
|
|---|
| 155 | ALLOCATE(dJ_dx(nstate))
|
|---|
| 156 | ALLOCATE(diag_d2J(nstate))
|
|---|
| 157 | ALLOCATE(d2J_dx2(nstate,nstate))
|
|---|
| 158 | ALLOCATE(KO(nstate,nobs))
|
|---|
| 159 | ALLOCATE(Bm1(nstate,nstate))
|
|---|
| 160 | ALLOCATE(Om1(nobs,nobs))
|
|---|
| 161 |
|
|---|
| 162 | IF (ALLOCATED(delta_J)) DEALLOCATE(delta_J)
|
|---|
| 163 | ALLOCATE(delta_J(config%conv_check_n_previous))
|
|---|
| 164 | delta_J(:) = 0.0_wp
|
|---|
| 165 |
|
|---|
| 166 | IF (ALLOCATED(state_last)) DEALLOCATE(state_last)
|
|---|
| 167 | ALLOCATE(state_last(SIZE(bg%state)))
|
|---|
| 168 | state_last(:) = 0.0_wp
|
|---|
| 169 |
|
|---|
| 170 | IF (ALLOCATED(state_sigma)) DEALLOCATE(state_sigma)
|
|---|
| 171 | ALLOCATE(state_sigma(SIZE(bg%state)))
|
|---|
| 172 | DO i = 1, SIZE(state_sigma)
|
|---|
| 173 | state_sigma(i) = SQRT(bg%cov%d(i + i*(i-1)/2)) ! Direct read from matrix_pp
|
|---|
| 174 | ENDDO
|
|---|
| 175 |
|
|---|
| 176 | IF (ALLOCATED(delta_state)) DEALLOCATE(delta_state)
|
|---|
| 177 | ALLOCATE(delta_state(config%conv_check_n_previous))
|
|---|
| 178 | delta_state(:) = 0.0_wp
|
|---|
| 179 |
|
|---|
| 180 | ! 1.4 Inverse error covariances
|
|---|
| 181 | ! -----------------------------
|
|---|
| 182 |
|
|---|
| 183 | Bm1 = matrix_invert(bg%cov)
|
|---|
| 184 | Om1 = matrix_invert(obs%cov)
|
|---|
| 185 |
|
|---|
| 186 | ! 1.5 First guess and pseudo-observations
|
|---|
| 187 | ! ---------------------------------------
|
|---|
| 188 |
|
|---|
| 189 | x = bg ; y = obs
|
|---|
| 190 |
|
|---|
| 191 | ! 1.6 Initial cost function
|
|---|
| 192 | ! -------------------------
|
|---|
| 193 |
|
|---|
| 194 | IF (ASSOCIATED(x%ak)) THEN
|
|---|
| 195 | CALL ropp_fm_state2state_ecmwf(x)
|
|---|
| 196 | ELSE
|
|---|
| 197 | CALL ropp_fm_state2state_meto(x)
|
|---|
| 198 | END IF
|
|---|
| 199 |
|
|---|
| 200 | CALL ropp_fm_bangle_1d(x, y)
|
|---|
| 201 |
|
|---|
| 202 | delta_x = (x%state - bg%state)
|
|---|
| 203 | delta_y = (y%bangle - obs%bangle) * y%weights
|
|---|
| 204 |
|
|---|
| 205 | J = 0.5_wp * DOT_PRODUCT(delta_y, MATMUL(Om1, delta_y)) &
|
|---|
| 206 | + 0.5_wp * DOT_PRODUCT(delta_x, MATMUL(Bm1, delta_x))
|
|---|
| 207 |
|
|---|
| 208 | diag%J_init = J
|
|---|
| 209 | J_last = J
|
|---|
| 210 | J_min = J
|
|---|
| 211 |
|
|---|
| 212 | IF (config%minropp%impres == 0) THEN
|
|---|
| 213 | WRITE(it_str, '(i4)') n_iter
|
|---|
| 214 | WRITE(ch_str, '(g15.5)') J
|
|---|
| 215 | ch_str = ADJUSTL(ch_str)
|
|---|
| 216 | co_str = ' - '
|
|---|
| 217 |
|
|---|
| 218 | CALL message(msg_cont, &
|
|---|
| 219 | ' n_iter = ' // it_str // ' J = ' // ch_str // &
|
|---|
| 220 | ' max(relative change in state) = ' // co_str)
|
|---|
| 221 | END IF
|
|---|
| 222 |
|
|---|
| 223 | ! 1.7 Main minimisation iteration loop
|
|---|
| 224 | ! ------------------------------------
|
|---|
| 225 |
|
|---|
| 226 | DO WHILE(n_iter < n_iter_max)
|
|---|
| 227 |
|
|---|
| 228 | ! 1.7.1 Bookkeeping
|
|---|
| 229 |
|
|---|
| 230 | n_grad = n_grad + 1
|
|---|
| 231 |
|
|---|
| 232 | ! 1.7.2 Compute gradient and Hessian of cost function
|
|---|
| 233 |
|
|---|
| 234 | CALL ropp_fm_bangle_1d_grad(x, y, K)
|
|---|
| 235 |
|
|---|
| 236 | !TODO: (a) Doe we need this? (b) Does it change the cost function?
|
|---|
| 237 | WHERE(ABS(delta_y) > 50.0_wp)
|
|---|
| 238 | delta_y = 0.0_wp
|
|---|
| 239 | END WHERE
|
|---|
| 240 |
|
|---|
| 241 | KO = MATMUL(TRANSPOSE(K), Om1)
|
|---|
| 242 | dJ_dx = MATMUL(KO, delta_y) + MATMUL(Bm1, delta_x)
|
|---|
| 243 | d2J_dx2 = Bm1 + MATMUL(KO, K)
|
|---|
| 244 |
|
|---|
| 245 | ! 1.7.3 Levenberg-Marquardt adjustment of Hessian diagonal
|
|---|
| 246 |
|
|---|
| 247 | DO i = 1, nstate
|
|---|
| 248 | d2J_dx2(i,i) = d2J_dx2(i,i) * (1.0_wp + mu)
|
|---|
| 249 | END DO
|
|---|
| 250 |
|
|---|
| 251 | ! 1.7.4 Solve matrix equation d2J_dx2 . dx = -dJ_dx and update state
|
|---|
| 252 |
|
|---|
| 253 | x_incr = matrix_solve(d2J_dx2, - dJ_dx)
|
|---|
| 254 |
|
|---|
| 255 | ! 1.7.5 Update test state vector
|
|---|
| 256 |
|
|---|
| 257 | x_old = x
|
|---|
| 258 |
|
|---|
| 259 | IF (x%use_logq) THEN
|
|---|
| 260 | x%state = x%state + SIGN(MIN(ABS(x_incr), ABS(x%state/2.0_wp)), x_incr)
|
|---|
| 261 | ELSE
|
|---|
| 262 | x%state = x%state + x_incr
|
|---|
| 263 | END IF
|
|---|
| 264 |
|
|---|
| 265 | ! 1.7.6 Special handling of ionospheric state vector elements
|
|---|
| 266 |
|
|---|
| 267 | IF (bg%direct_ion) THEN
|
|---|
| 268 |
|
|---|
| 269 | i = nstate - 2
|
|---|
| 270 | IF (x%state(i) < ropp_ZERO) THEN
|
|---|
| 271 | CALL message(msg_warn, "Levenberg-Marquardt solver returns " // &
|
|---|
| 272 | "Ne_max < 0 ... suggest examining final value. \n")
|
|---|
| 273 | END IF
|
|---|
| 274 |
|
|---|
| 275 | i = nstate - 1
|
|---|
| 276 | IF (x%state(i) < 0.01_wp*bg%state(i)) THEN
|
|---|
| 277 | CALL message(msg_warn, "Levenberg-Marquardt solver returns " // &
|
|---|
| 278 | "H_peak < 1% of background ... resetting to background value. \n")
|
|---|
| 279 | x%state(i) = bg%state(i)
|
|---|
| 280 | END IF
|
|---|
| 281 |
|
|---|
| 282 | i = nstate
|
|---|
| 283 | IF (x%state(i) < 0.01_wp*bg%state(i)) THEN
|
|---|
| 284 | CALL message(msg_warn, "Levenberg-Marquardt solver returns " // &
|
|---|
| 285 | "H_width < 1% of background ... resetting to background value. \n")
|
|---|
| 286 | x%state(i) = bg%state(i)
|
|---|
| 287 | END IF
|
|---|
| 288 |
|
|---|
| 289 | END IF
|
|---|
| 290 |
|
|---|
| 291 | ! 1.7.3 Compute cost function
|
|---|
| 292 |
|
|---|
| 293 | IF (ASSOCIATED(x%ak)) THEN
|
|---|
| 294 | CALL ropp_fm_state2state_ecmwf(x)
|
|---|
| 295 | ELSE
|
|---|
| 296 | CALL ropp_fm_state2state_meto(x)
|
|---|
| 297 | END IF
|
|---|
| 298 |
|
|---|
| 299 | CALL ropp_fm_bangle_1d(x, y)
|
|---|
| 300 |
|
|---|
| 301 | delta_x = (x%state - bg%state)
|
|---|
| 302 | delta_y = (y%bangle - obs%bangle) * y%weights
|
|---|
| 303 |
|
|---|
| 304 | J = 0.5_wp * DOT_PRODUCT(delta_y, MATMUL(Om1, delta_y)) &
|
|---|
| 305 | + 0.5_wp * DOT_PRODUCT(delta_x, MATMUL(Bm1, delta_x))
|
|---|
| 306 |
|
|---|
| 307 | ! 1.8 Levenberg-Marquardt update and convergence check
|
|---|
| 308 | ! ----------------------------------------------------
|
|---|
| 309 |
|
|---|
| 310 | ! Trust region
|
|---|
| 311 |
|
|---|
| 312 | rho = 2.0_wp * (J_last - J) / DOT_PRODUCT(x_incr, mu * x_incr - dJ_dx)
|
|---|
| 313 |
|
|---|
| 314 | IF (rho > 0.0_wp) THEN ! Check convergence
|
|---|
| 315 |
|
|---|
| 316 | ! 1.8.4 Update mu
|
|---|
| 317 |
|
|---|
| 318 | mu = mu * max(1.0_wp/gamma, 1.0_wp - (beta - 1.0_wp)*(2.0_wp*rho - 1.0_wp)**5)
|
|---|
| 319 | nu = beta
|
|---|
| 320 |
|
|---|
| 321 | ! 1.8.5 Keep track of current state
|
|---|
| 322 |
|
|---|
| 323 | n_iter = n_iter + 1
|
|---|
| 324 | J_last = J
|
|---|
| 325 |
|
|---|
| 326 | IF (config % conv_check_apply) THEN
|
|---|
| 327 | i_pointer = MOD(i_pointer + 1, config % conv_check_n_previous)
|
|---|
| 328 | IF (i_pointer == 0) i_pointer = config % conv_check_n_previous
|
|---|
| 329 |
|
|---|
| 330 | delta_J(i_pointer) = J_last - J
|
|---|
| 331 | delta_state(i_pointer) = MAXVAL(ABS(state_last - x%state)/state_sigma)
|
|---|
| 332 |
|
|---|
| 333 | state_last = x%state
|
|---|
| 334 | END IF
|
|---|
| 335 |
|
|---|
| 336 | IF (J < J_min) THEN
|
|---|
| 337 | J_min = J
|
|---|
| 338 | END IF
|
|---|
| 339 |
|
|---|
| 340 | ! 1.8.6 Check for convergence
|
|---|
| 341 |
|
|---|
| 342 | IF (config % conv_check_apply) THEN
|
|---|
| 343 |
|
|---|
| 344 | IF (config%minropp%impres == 0) THEN
|
|---|
| 345 | WRITE(it_str, '(i4)') n_iter
|
|---|
| 346 | WRITE(ch_str, '(g15.5)') J
|
|---|
| 347 | ch_str = ADJUSTL(ch_str)
|
|---|
| 348 | IF (n_iter > 0) THEN
|
|---|
| 349 | WRITE(co_str, '(g15.5)') delta_state(i_pointer)
|
|---|
| 350 | co_str = ADJUSTL(co_str)
|
|---|
| 351 | ELSE
|
|---|
| 352 | co_str = ' - '
|
|---|
| 353 | END IF
|
|---|
| 354 |
|
|---|
| 355 | CALL message(msg_cont, &
|
|---|
| 356 | ' n_iter = ' // it_str // ' J = ' // ch_str // &
|
|---|
| 357 | ' max(relative change in state) = ' // co_str)
|
|---|
| 358 | END IF
|
|---|
| 359 |
|
|---|
| 360 | IF (MAXVAL(delta_state) < config%conv_check_max_delta_state &
|
|---|
| 361 | .AND. n_iter > config % conv_check_n_previous) THEN
|
|---|
| 362 | WRITE(ch_str, '(g15.5)') config%conv_check_max_delta_state
|
|---|
| 363 | ch_str = ADJUSTL(ch_str)
|
|---|
| 364 | WRITE(it_str, '(i2)') config%conv_check_n_previous
|
|---|
| 365 | it_str = ADJUSTL(it_str)
|
|---|
| 366 | CALL message(msg_cont, '')
|
|---|
| 367 | CALL message(msg_info, &
|
|---|
| 368 | 'Convergence assumed to be achieved as the state vector did ' // &
|
|---|
| 369 | 'not change by more\n ' // 'than ' // TRIM(ch_str) // ' ' // &
|
|---|
| 370 | 'relative to the assumed background errors for the last ' // &
|
|---|
| 371 | TRIM(it_str) // ' iterations.\n')
|
|---|
| 372 | EXIT
|
|---|
| 373 | ELSE IF (MAXVAL(ABS(delta_J)) < config%conv_check_max_delta_J &
|
|---|
| 374 | .AND. n_iter > config % conv_check_n_previous) THEN
|
|---|
| 375 | WRITE(ch_str, '(g15.5)') config%conv_check_max_delta_J
|
|---|
| 376 | ch_str = ADJUSTL(ch_str)
|
|---|
| 377 | WRITE(it_str, '(i2)') config%conv_check_n_previous
|
|---|
| 378 | it_str = ADJUSTL(it_str)
|
|---|
| 379 | CALL message(msg_cont, '')
|
|---|
| 380 | CALL message(msg_info, &
|
|---|
| 381 | 'Convergence assumed to be achieved as the cost function did ' // &
|
|---|
| 382 | 'not change by more\n ' // 'than ' // TRIM(ch_str) // &
|
|---|
| 383 | ' for the last ' // TRIM(it_str) // ' iterations.\n')
|
|---|
| 384 | EXIT
|
|---|
| 385 | END IF
|
|---|
| 386 |
|
|---|
| 387 | END IF ! Convergence check
|
|---|
| 388 |
|
|---|
| 389 | ELSE ! rho < 0; retry with old state and updated mu
|
|---|
| 390 |
|
|---|
| 391 | x = x_old
|
|---|
| 392 | mu = mu * nu ; mu = 2.0_wp * nu
|
|---|
| 393 |
|
|---|
| 394 | !TODO: Add a configuration option for mu update outputs
|
|---|
| 395 | IF (config%minropp%impres == 0) THEN
|
|---|
| 396 | WRITE(it_str, '(i4)') n_iter
|
|---|
| 397 | WRITE(ch_str, '(g15.5)') J
|
|---|
| 398 | ch_str = ADJUSTL(ch_str)
|
|---|
| 399 | WRITE(co_str, '(g15.5)') mu
|
|---|
| 400 | co_str = ADJUSTL(co_str)
|
|---|
| 401 |
|
|---|
| 402 | CALL message(msg_cont, &
|
|---|
| 403 | ' n_iter = ' // it_str // ' J = ' // ch_str // &
|
|---|
| 404 | ' mu -> ' // co_str)
|
|---|
| 405 | END IF
|
|---|
| 406 |
|
|---|
| 407 | END IF ! Levenberg-Marquardt update
|
|---|
| 408 | END DO ! end main iteration loop
|
|---|
| 409 |
|
|---|
| 410 | IF (n_iter < 50) THEN
|
|---|
| 411 | WRITE(it_str, '(i4)') n_iter ; it_str = ADJUSTL(it_str)
|
|---|
| 412 | WRITE(gr_str, '(i4)') n_grad ; gr_str = ADJUSTL(gr_str)
|
|---|
| 413 | CALL message(msg_info, 'Finished after ' // TRIM(it_str) // ' iterations (' // &
|
|---|
| 414 | TRIM(gr_str) // ' forward model / gradient evaluations).\n')
|
|---|
| 415 | ELSE
|
|---|
| 416 | WRITE(it_str, '(i4)') n_iter ; it_str = ADJUSTL(it_str)
|
|---|
| 417 | CALL message(msg_warn, &
|
|---|
| 418 | 'Iteration ended after ' // TRIM(it_str) // &
|
|---|
| 419 | ' iterations without convergence achieved.\n')
|
|---|
| 420 | END IF
|
|---|
| 421 |
|
|---|
| 422 | ! 1.9 Copy solution back to state
|
|---|
| 423 | ! -------------------------------
|
|---|
| 424 |
|
|---|
| 425 | state = x
|
|---|
| 426 |
|
|---|
| 427 | ! 1.10 Diagnostic data
|
|---|
| 428 | ! --------------------
|
|---|
| 429 |
|
|---|
| 430 | diag%J = J_min
|
|---|
| 431 |
|
|---|
| 432 | IF (COUNT(obs%weights > 0.0_wp) > 0) THEN
|
|---|
| 433 | diag%J_scaled = 2.0_wp * J_min / REAL(COUNT(obs%weights > 0.0_wp), wp)
|
|---|
| 434 | ENDIF
|
|---|
| 435 |
|
|---|
| 436 | diag%n_iter = n_iter
|
|---|
| 437 |
|
|---|
| 438 | ALLOCATE (diag%J_bgr(SIZE(state%state)))
|
|---|
| 439 | delta_x = state%state - bg%state
|
|---|
| 440 | diag%J_bgr = 0.5_wp * delta_x * matrix_solve(bg%cov, delta_x)
|
|---|
| 441 |
|
|---|
| 442 | ! 1.11 Clean up
|
|---|
| 443 | ! -------------
|
|---|
| 444 |
|
|---|
| 445 | DEALLOCATE(K)
|
|---|
| 446 | DEALLOCATE(delta_x)
|
|---|
| 447 | DEALLOCATE(delta_y)
|
|---|
| 448 | DEALLOCATE(dJ_dx)
|
|---|
| 449 | DEALLOCATE(x_incr)
|
|---|
| 450 | DEALLOCATE(diag_d2J)
|
|---|
| 451 | DEALLOCATE(d2J_dx2)
|
|---|
| 452 | DEALLOCATE(KO)
|
|---|
| 453 | DEALLOCATE(Bm1)
|
|---|
| 454 | DEALLOCATE(Om1)
|
|---|
| 455 |
|
|---|
| 456 | CALL message_set_routine(routine)
|
|---|
| 457 |
|
|---|
| 458 | END SUBROUTINE ropp_1dvar_levmarq_bangle
|
|---|
| 459 |
|
|---|
| 460 | !***
|
|---|
| 461 |
|
|---|
| 462 | !-------------------------------------------------------------------------------
|
|---|
| 463 | ! 2. Refractivity
|
|---|
| 464 | !-------------------------------------------------------------------------------
|
|---|
| 465 |
|
|---|
| 466 | SUBROUTINE ropp_1dvar_levmarq_refrac(obs, bg, state, config, diag)
|
|---|
| 467 |
|
|---|
| 468 | ! 2.1 Declarations
|
|---|
| 469 | ! ----------------
|
|---|
| 470 |
|
|---|
| 471 | USE typesizes, ONLY: wp => EightByteReal
|
|---|
| 472 | USE ropp_utils
|
|---|
| 473 | USE ropp_fm
|
|---|
| 474 | USE ropp_1dvar, not_this => ropp_1dvar_levmarq_refrac
|
|---|
| 475 | USE matrix
|
|---|
| 476 |
|
|---|
| 477 | IMPLICIT NONE
|
|---|
| 478 |
|
|---|
| 479 | TYPE(Obs1dRefrac), INTENT(inout) :: obs ! Observation data
|
|---|
| 480 | TYPE(State1dFM), INTENT(inout) :: bg ! Background data
|
|---|
| 481 | TYPE(State1dFM), INTENT(inout) :: state ! State vector
|
|---|
| 482 | TYPE(VarConfig), INTENT(in) :: config ! Configuration options
|
|---|
| 483 | TYPE(VarDiag), INTENT(inout) :: diag ! Diagnostic output
|
|---|
| 484 |
|
|---|
| 485 | REAL(wp) :: J ! Cost function value
|
|---|
| 486 | TYPE(State1dFM) :: x ! Control vector
|
|---|
| 487 | TYPE(State1dFM) :: xmin ! Control at minimum J
|
|---|
| 488 | TYPE(Obs1dRefrac) :: y ! Forward model obs
|
|---|
| 489 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: K ! K-matrix
|
|---|
| 490 | REAL(wp), DIMENSION(:), ALLOCATABLE :: delta_x ! Change of state
|
|---|
| 491 | REAL(wp), DIMENSION(:), ALLOCATABLE :: delta_y ! Change of observation
|
|---|
| 492 | REAL(wp), DIMENSION(:), ALLOCATABLE :: dJ_dx ! Cost function gradient
|
|---|
| 493 | REAL(wp), DIMENSION(:), ALLOCATABLE :: diag_d2J ! Diagonal d2J/dx2
|
|---|
| 494 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: d2J_dx2 ! 2nd derivative cost
|
|---|
| 495 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: KO ! K O^-1
|
|---|
| 496 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: Bm1 ! B^-1
|
|---|
| 497 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: Om1 ! O^-1
|
|---|
| 498 | REAL(wp), DIMENSION(:), ALLOCATABLE :: delta_J ! Change of cost fn
|
|---|
| 499 | REAL(wp), DIMENSION(:), ALLOCATABLE :: state_last ! Previous state vector
|
|---|
| 500 | REAL(wp), DIMENSION(:), ALLOCATABLE :: state_sigma ! State std deviation
|
|---|
| 501 | REAL(wp), DIMENSION(:), ALLOCATABLE :: delta_state ! Change of state vector
|
|---|
| 502 | REAL(wp) :: J_last ! Previous cost function
|
|---|
| 503 | REAL(wp) :: J_min ! Minimum cost function
|
|---|
| 504 | INTEGER :: i_pointer ! Value index
|
|---|
| 505 | INTEGER :: i ! Counter
|
|---|
| 506 | INTEGER :: n_iter ! Number of iterations
|
|---|
| 507 | INTEGER :: nobs ! Number of obserations
|
|---|
| 508 | INTEGER :: nstate ! No. of state elements
|
|---|
| 509 | LOGICAL :: marq ! Flag to L-M minimise
|
|---|
| 510 | REAL(wp) :: lambda ! Iteration factor
|
|---|
| 511 |
|
|---|
| 512 | CHARACTER(len = 4) :: it_str
|
|---|
| 513 | CHARACTER(len = 15) :: ch_str, co_str
|
|---|
| 514 | CHARACTER(len = 256) :: routine
|
|---|
| 515 |
|
|---|
| 516 | ! 2.2 Message handling
|
|---|
| 517 | ! --------------------
|
|---|
| 518 |
|
|---|
| 519 | CALL message_get_routine(routine)
|
|---|
| 520 | CALL message_set_routine('ropp_1dvar_levmarq')
|
|---|
| 521 |
|
|---|
| 522 | ! 2.3 Initialise rolling buffers and pointer for convergence checks
|
|---|
| 523 | ! -----------------------------------------------------------------
|
|---|
| 524 |
|
|---|
| 525 | i_pointer = 0
|
|---|
| 526 | n_iter = 0
|
|---|
| 527 | lambda = 1.0E-4_wp
|
|---|
| 528 | marq = .FALSE.
|
|---|
| 529 | J = 0.0_wp
|
|---|
| 530 | J_last = 1.0E30_wp
|
|---|
| 531 | J_min = J_last
|
|---|
| 532 |
|
|---|
| 533 | nstate = SIZE(bg%state)
|
|---|
| 534 | nobs = SIZE(obs%refrac)
|
|---|
| 535 |
|
|---|
| 536 | ALLOCATE(K(nobs, nstate))
|
|---|
| 537 | ALLOCATE(delta_x(nstate))
|
|---|
| 538 | ALLOCATE(delta_y(nobs))
|
|---|
| 539 | ALLOCATE(dJ_dx(nstate))
|
|---|
| 540 | ALLOCATE(diag_d2J(nstate))
|
|---|
| 541 | ALLOCATE(d2J_dx2(nstate,nstate))
|
|---|
| 542 | ALLOCATE(KO(nstate,nobs))
|
|---|
| 543 | ALLOCATE(Bm1(nstate,nstate))
|
|---|
| 544 | ALLOCATE(Om1(nobs,nobs))
|
|---|
| 545 |
|
|---|
| 546 | Bm1 = matrix_invert(bg%cov)
|
|---|
| 547 | Om1 = matrix_invert(obs%cov)
|
|---|
| 548 |
|
|---|
| 549 | IF (ALLOCATED(delta_J)) DEALLOCATE(delta_J)
|
|---|
| 550 | ALLOCATE(delta_J(config%conv_check_n_previous))
|
|---|
| 551 | delta_J(:) = 0.0_wp
|
|---|
| 552 |
|
|---|
| 553 | IF (ALLOCATED(state_last)) DEALLOCATE(state_last)
|
|---|
| 554 | ALLOCATE(state_last(SIZE(bg%state)))
|
|---|
| 555 | state_last(:) = 0.0_wp
|
|---|
| 556 |
|
|---|
| 557 | IF (ALLOCATED(state_sigma)) DEALLOCATE(state_sigma)
|
|---|
| 558 | ALLOCATE(state_sigma(SIZE(bg%state)))
|
|---|
| 559 | DO i = 1, SIZE(state_sigma)
|
|---|
| 560 | state_sigma(i) = SQRT(bg%cov%d(i + i*(i-1)/2)) ! Direct read from matrix_pp
|
|---|
| 561 | ENDDO
|
|---|
| 562 |
|
|---|
| 563 | IF (ALLOCATED(delta_state)) DEALLOCATE(delta_state)
|
|---|
| 564 | ALLOCATE(delta_state(config%conv_check_n_previous))
|
|---|
| 565 | delta_state(:) = 0.0_wp
|
|---|
| 566 |
|
|---|
| 567 | ! 2.4 First guess state
|
|---|
| 568 | ! ---------------------
|
|---|
| 569 |
|
|---|
| 570 | x = bg
|
|---|
| 571 | xmin = bg
|
|---|
| 572 |
|
|---|
| 573 | ! 2.5 Main minimisation iteration loop
|
|---|
| 574 | ! ------------------------------------
|
|---|
| 575 |
|
|---|
| 576 | DO WHILE (J <= J_min)
|
|---|
| 577 |
|
|---|
| 578 | ! 2.5.1 Update iteration counter
|
|---|
| 579 |
|
|---|
| 580 | n_iter = n_iter + 1
|
|---|
| 581 |
|
|---|
| 582 | ! 2.6 Compute cost function
|
|---|
| 583 | ! -------------------------
|
|---|
| 584 |
|
|---|
| 585 | ! 2.6.1 Calculate pseudo observations
|
|---|
| 586 | ! -----------------------------------
|
|---|
| 587 |
|
|---|
| 588 | ALLOCATE(y%refrac(SIZE(obs%refrac)))
|
|---|
| 589 |
|
|---|
| 590 | CALL copy_alloc(obs % geop, y % geop)
|
|---|
| 591 | CALL copy_alloc(obs % weights, y % weights)
|
|---|
| 592 |
|
|---|
| 593 | ! 2.6.2 Forward model
|
|---|
| 594 | ! -------------------
|
|---|
| 595 |
|
|---|
| 596 | IF(ASSOCIATED(x%ak))THEN
|
|---|
| 597 | CALL ropp_fm_state2state_ecmwf(x)
|
|---|
| 598 | ELSE
|
|---|
| 599 | CALL ropp_fm_state2state_meto(x)
|
|---|
| 600 | ENDIF
|
|---|
| 601 |
|
|---|
| 602 | IF (x%new_ref_op) THEN
|
|---|
| 603 | CALL ropp_fm_refrac_1d_new(x, y)
|
|---|
| 604 | ELSE
|
|---|
| 605 | CALL ropp_fm_refrac_1d(x, y)
|
|---|
| 606 | END IF
|
|---|
| 607 |
|
|---|
| 608 | ! 2.6.3 Compute cost function
|
|---|
| 609 | ! ---------------------------
|
|---|
| 610 |
|
|---|
| 611 | delta_x = (x%state - bg%state)
|
|---|
| 612 | delta_y = (y%refrac - obs%refrac) * y%weights
|
|---|
| 613 |
|
|---|
| 614 | J = 0.5_wp * DOT_PRODUCT(delta_y, MATMUL(Om1, delta_y)) &
|
|---|
| 615 | + 0.5_wp * DOT_PRODUCT(delta_x, MATMUL(Bm1, delta_x))
|
|---|
| 616 |
|
|---|
| 617 | IF (n_iter == 1) diag % J_init = J
|
|---|
| 618 |
|
|---|
| 619 | IF (J > J_last) marq = .TRUE.
|
|---|
| 620 |
|
|---|
| 621 | ! 2.7 Levenberg-Marquardt minimisation
|
|---|
| 622 | ! ------------------------------------
|
|---|
| 623 |
|
|---|
| 624 | IF(.NOT. marq)THEN
|
|---|
| 625 |
|
|---|
| 626 | ! 2.7.1 Normal Newtonian iteration
|
|---|
| 627 | ! --------------------------------
|
|---|
| 628 |
|
|---|
| 629 | lambda = 0.1_wp * lambda
|
|---|
| 630 | marq = .FALSE.
|
|---|
| 631 |
|
|---|
| 632 | ! 2.7.2 Evaluate K gradient matrix for current x
|
|---|
| 633 | ! ----------------------------------------------
|
|---|
| 634 |
|
|---|
| 635 | CALL ropp_fm_refrac_1d_grad(x, y, K)
|
|---|
| 636 |
|
|---|
| 637 | ! 2.7.3 Calculate -dJ_dx vector and d2J_dx2 matrix at x
|
|---|
| 638 | ! -----------------------------------------------------
|
|---|
| 639 |
|
|---|
| 640 | delta_x = x%state - bg%state
|
|---|
| 641 | delta_y = (obs%refrac - y%refrac) * y%weights
|
|---|
| 642 |
|
|---|
| 643 | WHERE(ABS(delta_y) > 50.0_wp)
|
|---|
| 644 | delta_y = 0.0_wp
|
|---|
| 645 | END WHERE
|
|---|
| 646 |
|
|---|
| 647 | KO = MATMUL(TRANSPOSE(K), Om1)
|
|---|
| 648 | dJ_dx = MATMUL(KO, delta_y) - MATMUL(Bm1, delta_x)
|
|---|
| 649 | d2J_dx2 = Bm1 + MATMUL(KO, K)
|
|---|
| 650 |
|
|---|
| 651 | ! 2.7.4 Store inverse of solution covariance matrix
|
|---|
| 652 | ! -------------------------------------------------
|
|---|
| 653 |
|
|---|
| 654 | DO i=1,SIZE(bg%state)
|
|---|
| 655 | diag_d2J(i) = d2J_dx2(i,i)
|
|---|
| 656 | ENDDO
|
|---|
| 657 |
|
|---|
| 658 | ELSE
|
|---|
| 659 |
|
|---|
| 660 | ! 2.7.5 Levenberg-Marquardt iteration
|
|---|
| 661 | ! -----------------------------------
|
|---|
| 662 | ! The previous increment increased the value of the penalty function.
|
|---|
| 663 | ! Use previous values of -dJ_dx, d2J_dx2 and adjust value of lambda
|
|---|
| 664 |
|
|---|
| 665 | marq = .TRUE.
|
|---|
| 666 | lambda = 100.0_wp * lambda
|
|---|
| 667 |
|
|---|
| 668 | ENDIF
|
|---|
| 669 |
|
|---|
| 670 | ! 2.7.6 Levenberg-Marquardt adjustment to diagonal terms
|
|---|
| 671 | ! ------------------------------------------------------
|
|---|
| 672 |
|
|---|
| 673 | DO i=1, SIZE(bg%state)
|
|---|
| 674 | d2J_dx2(i,i) = diag_d2J(i) * (lambda+1.0_wp)
|
|---|
| 675 | ENDDO
|
|---|
| 676 |
|
|---|
| 677 | ! 2.7.7 Solve matrix equation d2J_dx2 . dx = -dJ_dx and update state
|
|---|
| 678 | ! ------------------------------------------------------------------
|
|---|
| 679 |
|
|---|
| 680 | if (x%use_logq) then
|
|---|
| 681 | delta_x = matrix_solve(d2J_dx2, dJ_dx)
|
|---|
| 682 | x%state = x%state + SIGN( MIN(ABS(delta_x),ABS(x%state/2.0_wp)), &
|
|---|
| 683 | delta_x)
|
|---|
| 684 | else
|
|---|
| 685 | x%state = x%state + matrix_solve(d2J_dx2, dJ_dx)
|
|---|
| 686 | endif
|
|---|
| 687 |
|
|---|
| 688 | ! 2.8 Update state vector variables - model dependent
|
|---|
| 689 | ! ---------------------------------
|
|---|
| 690 |
|
|---|
| 691 | IF(ASSOCIATED(x%ak))THEN
|
|---|
| 692 | CALL ropp_fm_state2state_ecmwf(x)
|
|---|
| 693 | ELSE
|
|---|
| 694 | CALL ropp_fm_state2state_meto(x)
|
|---|
| 695 | ENDIF
|
|---|
| 696 |
|
|---|
| 697 | ! 2.9 Keep track of current state
|
|---|
| 698 | ! -------------------------------
|
|---|
| 699 |
|
|---|
| 700 | IF( J_min > J ) THEN
|
|---|
| 701 | J_min = J
|
|---|
| 702 | xmin = x
|
|---|
| 703 | ENDIF
|
|---|
| 704 |
|
|---|
| 705 | IF (config % conv_check_apply) THEN
|
|---|
| 706 |
|
|---|
| 707 | i_pointer = MOD(i_pointer + 1, config % conv_check_n_previous)
|
|---|
| 708 | IF (i_pointer == 0) i_pointer = config % conv_check_n_previous
|
|---|
| 709 |
|
|---|
| 710 | delta_J(i_pointer) = J_last - J
|
|---|
| 711 | J_last = J
|
|---|
| 712 | delta_state(i_pointer) = MAXVAL(ABS(state_last - x%state)/state_sigma)
|
|---|
| 713 | state_last = x%state
|
|---|
| 714 |
|
|---|
| 715 | ENDIF
|
|---|
| 716 |
|
|---|
| 717 | ! 2.10 Check for convergence
|
|---|
| 718 | ! --------------------------
|
|---|
| 719 |
|
|---|
| 720 | IF (config % conv_check_apply) THEN
|
|---|
| 721 |
|
|---|
| 722 | IF (config%minropp%impres == 0)THEN
|
|---|
| 723 | WRITE(it_str, '(i4)') n_iter
|
|---|
| 724 | WRITE(ch_str, '(g15.5)') J
|
|---|
| 725 | ch_str = ADJUSTL(ch_str)
|
|---|
| 726 | IF (n_iter > 1) THEN
|
|---|
| 727 | WRITE(co_str, '(g15.5)') delta_state(i_pointer)
|
|---|
| 728 | co_str = ADJUSTL(co_str)
|
|---|
| 729 | ELSE
|
|---|
| 730 | co_str = ' - '
|
|---|
| 731 | ENDIF
|
|---|
| 732 |
|
|---|
| 733 | CALL message(msg_cont, &
|
|---|
| 734 | ' n_iter = ' // it_str // ' J = ' // ch_str // &
|
|---|
| 735 | ' max(relative change in state) = ' // co_str)
|
|---|
| 736 | ENDIF
|
|---|
| 737 |
|
|---|
| 738 |
|
|---|
| 739 | IF (MAXVAL(delta_state) < config%conv_check_max_delta_state &
|
|---|
| 740 | .AND. n_iter > config % conv_check_n_previous) THEN
|
|---|
| 741 | WRITE(ch_str, '(g15.5)') config%conv_check_max_delta_state
|
|---|
| 742 | ch_str = ADJUSTL(ch_str)
|
|---|
| 743 | WRITE(it_str, '(i2)') config%conv_check_n_previous
|
|---|
| 744 | it_str = ADJUSTL(it_str)
|
|---|
| 745 | CALL message(msg_cont, '')
|
|---|
| 746 | CALL message(msg_info, &
|
|---|
| 747 | 'Convergence assumed to be achieved as the state vector did ' // &
|
|---|
| 748 | 'not change by more\n ' // 'than ' // TRIM(ch_str) // ' ' // &
|
|---|
| 749 | 'relative to the assumed background errors for the last ' // &
|
|---|
| 750 | TRIM(it_str) // ' iterations.\n')
|
|---|
| 751 | EXIT
|
|---|
| 752 | ELSE IF (MAXVAL(ABS(delta_J)) < config%conv_check_max_delta_J &
|
|---|
| 753 | .AND. n_iter > config % conv_check_n_previous) THEN
|
|---|
| 754 | WRITE(ch_str, '(g15.5)') config%conv_check_max_delta_J
|
|---|
| 755 | ch_str = ADJUSTL(ch_str)
|
|---|
| 756 | WRITE(it_str, '(i2)') config%conv_check_n_previous
|
|---|
| 757 | it_str = ADJUSTL(it_str)
|
|---|
| 758 | CALL message(msg_cont, '')
|
|---|
| 759 | CALL message(msg_info, &
|
|---|
| 760 | 'Convergence assumed to be achieved as the cost function did ' // &
|
|---|
| 761 | 'not change by more\n ' // 'than ' // TRIM(ch_str) // &
|
|---|
| 762 | ' for the last ' // TRIM(it_str) // ' iterations.\n')
|
|---|
| 763 | EXIT
|
|---|
| 764 | ENDIF
|
|---|
| 765 |
|
|---|
| 766 | ENDIF
|
|---|
| 767 |
|
|---|
| 768 | ENDDO ! end main iteration loop
|
|---|
| 769 |
|
|---|
| 770 | ! 2.11 Copy solution back to state
|
|---|
| 771 | ! --------------------------------
|
|---|
| 772 |
|
|---|
| 773 | state = xmin
|
|---|
| 774 |
|
|---|
| 775 | ! 2.12 Diagnostic data
|
|---|
| 776 | ! --------------------
|
|---|
| 777 |
|
|---|
| 778 | diag % J = J_min
|
|---|
| 779 |
|
|---|
| 780 | IF (COUNT(obs % weights > 0.0_wp) > 0) THEN
|
|---|
| 781 | diag % J_scaled = 2.0_wp * J_min / REAL(COUNT(obs % weights > 0.0_wp), wp)
|
|---|
| 782 | ENDIF
|
|---|
| 783 |
|
|---|
| 784 | diag % n_iter = n_iter
|
|---|
| 785 |
|
|---|
| 786 | ALLOCATE (diag%J_bgr(SIZE(state%state)))
|
|---|
| 787 | delta_x = state%state - bg%state
|
|---|
| 788 | diag % J_bgr = 0.5_wp * delta_x * matrix_solve(bg%cov, delta_x)
|
|---|
| 789 |
|
|---|
| 790 | ! 2.13 Clean up
|
|---|
| 791 | ! -------------
|
|---|
| 792 |
|
|---|
| 793 | DEALLOCATE(K)
|
|---|
| 794 | DEALLOCATE(delta_x)
|
|---|
| 795 | DEALLOCATE(delta_y)
|
|---|
| 796 | DEALLOCATE(dJ_dx)
|
|---|
| 797 | DEALLOCATE(diag_d2J)
|
|---|
| 798 | DEALLOCATE(d2J_dx2)
|
|---|
| 799 | DEALLOCATE(KO)
|
|---|
| 800 | DEALLOCATE(Bm1)
|
|---|
| 801 | DEALLOCATE(Om1)
|
|---|
| 802 |
|
|---|
| 803 | CALL message_set_routine(routine)
|
|---|
| 804 |
|
|---|
| 805 | END SUBROUTINE ropp_1dvar_levmarq_refrac
|
|---|